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I. !I_fRODUCT ION

This volume contains a description of representative en_ineerin_

experiments which are applicable to a spacecraft of the type umler

consideration by JPL. By necessity, a study of this type is !initcd

in the number of experiments that can be considered and the depth to

which each experiment can be studied.

The engineering experiments _Jere selected prima_-ily on seori_i

well in the following areas:

I. The need for exposure to integrated space

2. Supplies information unavailable by gro_nd simulation

techniques

3. Compatibility" with the specified spacecraft

The selected engineering experiments have been divided into engi-

neering technologies and are listed in Table !.

Due to several factors, such as

I. Accurate sun orientation of the spacecraft

2. Presence of the solar thermionic experim, ent

3. Ability of the spacec_:aft to accommodate a large nur._bcr of

solar-oriented experiment s

the engineering experiments are mainly concentrated in the p_Jer tech-

nology area. The experiments in this area are relatively simple, yc_

supply valuable information.

The experiments considered in the telecommunications area _ere

/

relatively complex and only a "laser experiment" _as acceptable.

Several secondary engineering experiments conszdere:_ in the

General Electric Final Report for Contract No, n ......_.or J:-L aL-e

summarized in this volume. For a_:!ditional infor:_ation and en>:ine_:i:_:

experiments, the reader i_ refer-red to ti_e Gestural _!ec _-_, F_ o] ?_nc-_-

The results of this portion of t_,e._study arc: illust_'ative ,_"_._:-_

types of engineering _-" r_ _uce_ on the s_c:cili_iexp_m ....s _hici_ can be inc _ _ _

spacecraft. T....

] [
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TAB I._ 1.

Technology

I Power

II' Attitude Control

!II Thermal Control

GE Final Report

6961-Finml (Ill)

ENClI_ER!NG EXPERI>_)rfS

Experiment

I-A Solar Cell Angle of incidence

Experiment

I-B Optical Transmittance Test

I-C }_asurement of Reflective Surface

Degradation

I-D l_at Pipe Experiment

I-E Concentrator Tomnerature and

Strain Measurements

I-F Concentrator Reflectance and

Angular Error Measurement

I-G Solar Cell Calibration Test

I-H Solar Constant of the Sun

I-I Measurement of Spectral Distribu-

tion of Space Sunlight

l-J Evaluation of Conventionsl

Batteries in Zero Gravity

I-K Evaluation of Rezenerative _;drogen-

Oxygen Fuel Cell in Zero Gravity

I-L Radiation Effects on Solar Cells*

I-M Vee-Ridge Phot_,'oltaics e

I-N Thin Film Solar Cells*

!-O Solar Thermionics*

I-P Pyrometer

II-A

ll-g

III-A

!II-B

Brushless dc Torquer - Reaction
_ee!

Attitude Control by ElectL'ic

Thrustors

Thermal Control Phase Chancre _[at_,ria!s

Thermal Coatings*

<
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EXPER I_E N_2 I-A

SOLAR CELL ANGLE OF INCIDENCE EXPERI}E}_

i. BACKGROLXqD

Solar photovoltaic arrays that are not oriented to give normal

incidence sunlight or arrays that are mounted on curved surfaces incur

losses in power output due to the angle of incidence of the impinzing

illumination. For small angles of incidence, a cosine law deviation

from the power output at normal incidence can be used. For large

angles of incidence (greater than 30 degrees) there is a dc_viatiOn

from the cosine law which causes the p_._er output to decrease ?_ore

rapidly than would normally be expected. The deviation from the

cosine law is also markedly affected by the type and thic]mess of

coverglasses and filters used to protect the solar cell. The adhesive

between the solar cell and coverglass may also cause a deviation f_'om

the cosine law at high angles of incidence. The deviation from the

cosine law can probably be ascribed to polarization of the incident

illumination by the coverglass and adhesive and defraction of the

incident of illumination by the coverglass and adhesive and defraction

of the incident of illumination by the cover_<lass adllesive, it mmy

also be possible that the surface of the silicon solar cell _<a._ hav_

some effect on the deviation from the cosine law at large an[<l<_s of

incidences. Since all of these items are affected b_ the space en-

vironment, it is entirely possible that ground test results "_¢ilibe

different from space performance.

This experiment is designed to accomplish the following objectives:

I. Determine the deviation from the cosine lay: for angles of

incidences from 0 to 90 degrees

2. Determine the effect of va_ious covcr_!ass thic:kncsscs on

the deviation of the cosine la_

6961-Final ([!l)
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TechnoloKy

IV Mechanic al

V Telecommunications

VI Optical

VII Supporting Science

TABLE I. ENGII{ERiNG EXPERi_'_N_S (contd)

E>:peri:nent

IV-A Cold Welding in Integrated Space

Environment

IV-B Sublimation of >_terials in Space

IV-C }_teoroid Armor Test

V-A Laser Experiment*

VI-A Transmittance Test

VII-A Solar Ultraviolet

VII-B Solar Lyman Alphas

VII-C Proton-Electron

VII-D Solar Gamma Ray

VII-E Solar X-Ray

VII-F Micrometeoroids Pressure

a

VII-G Magnetic Field

VII-H Local Pressure
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3. Determine the effec_ of different type._ of adhesiv___s on _,_

deviation from the cosine law.

4. Determine if the silicon surface of the solar cell affects

the deviation from the cosine law.

a

2. EXPERIMENT DEFINITION

A spacecraft designed to test a solar thermionic system also

makes a suitable test platform for a sun angle experiment. The c,v_rali

spacecraft will be sun-oriented in order to keep the primary thernionic

experiment normally in-ident to the sun's illumination. All that ,,,,ouiJ

be necessary for the sun angle ,_-_',_-_ __,_ _,-=un_ is a secondary or_nta_]c_._

array that incorporatec] cells at 0 to 90 ° illumination angles of i_<i-

dence and the necessary telemetry and measuring devices to dcter,m]_,c

the effect of varying angle of incidence on the test specimens. Yhe

primary experiment would provide measurements of the solar intensity

radiation ;environment, orientation (of the overall spacecralt); and

micrometeoroid density•

The experiment would consist of one secondary _i__ntabl_ array,

approximately 1 ftx 1 ft x 0.25 inches.

The test specimens will consist of ten groups _f ]_" ¢_o_]s _-,_ a

total i00 cells. Each group will be as follows:

I. Bare n-on-p 2 x 2 cm solar cell with no surface ]rcpara'::_,n

other than grid lines

2. 2 x 2 cm n-on-p solar cell with a mechanicaliy-clamued

3-mil coverslide

3. 2 x 2 cm n-on-p solar cell with mechanically-clamped 12-mil

coverslide

4. 2 x 2 cm n-on-p solar cell with mechanically-clamped 30-rail

coverslide

5 2 x 2 cm n-on-p solar cell with mechanical _'- -' -

coverslide

6_-_61-Final (Ill) 5 ......



#

Q

I
I

I
I

I

I
I

I
I
I .

I

I
I

I
I

I
I

6. 2 x 2 cm n-on-p solar cell with LTV-602 adhesive _nd 3-mJl

coverslide

7. 2 x 2 cm n-on-p solar cell with LTV-6O2 adhesive and 12-mil

coverslide

8. 2 x 2 cm n-on-p solar cell with LTV-602 achesive and 30-rail

coverslide

9. 2 x 2 _m n-on-p solar cell with LTV-602 adhesive and 6@-rail

coverslide

I0. Bare 2 x 2 cm n-on-p solar cell with antireflective coatin8

Within each group, every 2 cells could be placed at a differ_n_

angle.

Each of the test solar cells will be pre-irradiated with ] mev

electron to s total integrated flux of I x ]015 ele_ _, , 2_ron_j _m . fhis

will minimize the effect of space radiation on the performance of the

solar cells during the test period. The temperature of the secondary

array and test specimens will be monitored with thermistors as indi-

cated in Fig. 1.

The measured parameters would be short-circuit current and

temperature. Approximately i00 channels of infomnation are required

with slow sampling rates.

° EXPERIMENT SPECIFICATION

The interface requirements for the sun angle experiment are sum-

marized below (see Fig. 2):

Electrical power required:

Weight:

Size:

1.5 watts for operation of thermistors

Less than 3.5 Ib (including elec-

tronics

i ft x I ftx 1.5 inches plus

3 in x 6 in x 6 in el_tronics

Telemetry accuracy required: 1 percent of full scale reaJlng

Data rate: _ i bit_sec

Thermal: -20°C to +70°C

6961-Final (III) 6
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EXPERIMENT I-B

OPTICAL TRANSMITTANCE TEST

i. BACKGRO UN_D

The space environment has many deleterious effects on materials

used in a satellite. For satellite equipment and surfaces that are

used in optical operations, the space environment is especially

d_naging. Effects such as erosion of optical surfaces, discoloring

of adhesives, and discoloring of optical glasses occur in the space

environment. Fhc causes for this damage are primarily thought to be

bombardment, ultraviolet radiation, and particulate particle radi_tien.

Reaction to the space environment for a wide range ,_f materials

has been the object of much effort in recent years. Plastic films

may be useful in t_e space environment in various applications,

depending on how rapidly the films are damaged by this envoronment.

One possible use of these films is to encapsulate thin-film cadmimn

sulfide solar cells, which might be used as sources of powder in space.

For this type of solar cell, the plastic film provides several func-

tions: protection from the prelaunch environment, physical support,

and a method of temperature control in space.

When a plastic film is used as an encapsulant, th_ effects af the

space environment on the optical transmission and the mechanical prop-

erties are important. The films must remain reasonably transparent

(80 to 90 percent) to most of the solar spectrum of interest.

The operation of optical equipment in the space environment must

be known and the time dependent changes of the optical properties must

be predictable in order to adequately design equipment for space use.

Some of the prime materials to be investigated are solar cell cover-

glasses, plastics, and camera or telescope lenses. In the cas_ of solar

cell coverglasses, the effect of transmission loss (i.e., surface erosion

or darkening) can cause a loss in power output of the solar array. Dam-

age to the optical surfaces of telescopes and cameras causes degradation

6961-Final (II!)
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in performance of this equipment during their respectlve missions. It

is desirable to know the effect of the space environment as a function

of time on the various optical surfaces used in a satellite.

This experiment is designed to accomplish the following objectives:

I. To determine the effect of the integrated space enviornoment

on typical plastic films as a function oi time.

2. To determine the effect of the space environment on typical

solar cell coverslide material as a function of time.

3. To determine the effect of the space environment as a func-

tion of time on typical telescope and cmmers optical sur-

faces.

2. EXPERIMENT DEFINITION

The selection of appropriate combinations of surface preparations

for the optical materials to be investigated will allow for the deter-

mination of the mode of damage occurring on the optical surface, it

is possible to differentiate the effects of micrometeoroid erosion,

ultraviolet radiation, and charged particle damage by properly pro-

tecting samples with sun shields (UV), quartz glass (micrometeoroids_,

or a combination of these.

Damage to materials can result from meteoroids by erosion, per-

foration, spallation, and pressure shocks. The extent of dmnage is

related to the flux rate, particle size and density, and impact speed.

As it is generally true of other elements of the space environment,

these data are not yet too accurately defined with respect to spacial

distributions and are variable with time Meteoroids may be classified

as meteorites, meteors, and micrometeoroids or dust. These differ as to

mass, density, orbit, and origin.

The fraction of the sun's energy at wavelengths in the ultraviolet

o

and x-ray region (less than 3000_) is 1.2 percent. During periods of

solar flares, the levels can be increased by several orders of _nagni-

tude for periods of a few hours. The main reason for interest in th_

6961-Final(Ill) lO .............................. _ -...................................
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UV and x-ray mission is because the full-time energies are suffici_nt!v

high to initiate chemical remctions and ionization of materials. Such

reactions can begin at wavelengths below 3000_ in a near ultraviolet

period. In view of the transient nature of sun spots and solar flares,

the most practical presentation of data is in terms of y_arly averages

since a test vehicle will almost certainly be in orbit for a fair frac-

tion of a year for a meaningful task of space environmental effects on

materials.

The trapped radiation fields and solar flare protons encountered

in near-earth-space can cause damage in optical surfaces due to high

energy sputtering and internal discoloration of the o?tica! naterioi,_.

In the case of solar cell coverglass, discoloration is due to the for_nu-

tion of F centers in the covergiass which is brought about by displace-

ment of impurity items in the material.

In all cases, the time dependent degradation of the optical sur-

face would be measured by noting the decrease of transmission through

the optical material or, in the case of meteoroid erosion, measuring

the increase in transmission through a coated surface.

One of the most important aspects of this experiment is to dif-

ferentiate the various effects that are pccurring simultaneously in

the space environment. This is possible through the choice of s_lecte_

materials and protective devices which will be placed above the test

specimens.

The experiment shall consist of 15 optical surfaces each prepared

in a specific manner to measure one or all parts of the space environ-

mental degradation. Each specimen will be rotated over a photomulti-

plier tube to measure incident solar illumination. Figure 3 shows

the mechanical configuration of a test apparatus.

Sample ] consists of a !25-mii quartz plate coated with a thin

layer of silver, l_his sample wil_ determine the time dependent effect

of meteoroid erosion on a reflective surface. Samples 2 and 3 will

measure the effect of ultraviolet radiation on adhesives used to bond

6961-Final (III) II
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coverslides to solar cells. The basic structure of samples 2 and 3

is a sandwich design with a 6-mil quartz ceverslide, adhesive, adhesive

and a 125-mii quartz coverslide to,protect the adhesive from charged

particle radiation.

Samples 4 and 5 will determine the effect of charged particle

radiation on coverslide adhesives. The structure is the same as for

samples 2 and 3 except that the 125-mii quartz coverglass is replaced

with a 3-mil quartz coverglass with a UV filter. Samples 6 through I0

will be various coverglasses and lens material which will see the

entire space environment. Samples Ii through 15 are a 5-mil sample

of H film mylar with separation of effects protective covers. SamT_ie
4

14 and 15 are Aclar 22A and Tedlar 50 exposed to the total enviro_ent.

The effect of the overall environment will be determined by measuring

the change in the amount of light transmitted through the specimens

with a photomultiplier tube as a function of time.

3. EXPERIMENT SPECIFICATION

The interface requirements for the optical transmittance experi-

ment are summarized below (see Fig. 3):

Electrical power required: 8.0 watts for operation of motor,

thermistors_ photomultiplier tube,

and el_ctronics

Weight: less than 15 ib

Size: 12 inches in diameter x 4 inches deep

Instrumentation: 1 analog voltage 0 to 5 volts (photo-

multiplier tube output), 15 tempera-

tures (thermistors 0 to 5 volts)

Telemetry accuracy required: i percent of full scale reading

.o
The experiment must be sun-oriented within approxinately = _

Thermal: -30°C to +65°C

6961-Final (!Ii) 13 -: f
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EXPE RIMEN_f I-C

MEASLrREMENT OF REFLECTIV'E SURFACE DEGRADATION

i. BACKG ROUND

The performance of a solar concentrator depends on the geon_etrical

accuracy and specular reflectivity of the concentrator surface_ Success

has been achieved in developing fabrication techniques that provide the

required geometrical accuracies for solar thern_ionic systems, although

verification that these accuracies can be maintained in space durin_

thermal cycling is required. One area in _lich data are criti_i _y we_•_,

however, is that of the durability of highly reflective _urfaces in _hc

space environment. This results from two factors: uncert_inty of the

space environment and the difficulty of simulating effectively t!_ose

characteristics known to be present° The problems of simulat'en become

particularly difficult when the necessity for long duration tests and

combinations of physical effects are considered.

In recognition of the need for data on reflective surface dura-

bility, EOS recently performed a feasibility study to define a fl_n_

experiment for accurate determination of the perforr_ance of the reflec-

tive properties of solar concentrators in space. This study included

evaluation of the space environment as it is presently kno_, _electicn

of the solar concentrator surface samples to be tested, analysis and

prediction of the performance of the samples in the space envirr;nnent,

and the generation of the experiment requirements_ An experiment was

designed which would test many substrate and surface material combina-

tions for an extended period in space under conditions closely approxi-

mating those for an actual concentrator surface° The samples would be

oriented toward the sun. Through the use of selective shielding, the

influence of various environmental effects could be separated.

The following effects are most likely to damage the reflective

surfaces :

6961-Final (III) 14
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i. Micrometeorites

2. Low-energy protons

3o Solar ultraviolet radiation

The results of this study are contained in EOS Report 4100-Final,

Study of a Flight Experiment of Solar-Concentrator Reflective Surfaces,

prepared for NASA/Langley Research Center. The satellite package, as

defined in the study, is a cylinder approximately 2 feet in di_neter

and 8 inches thick_ It carries 25 to 28 test samples and t_iree cali-

bration surfaces. Reflectance is measured by a moving arm reflectom-

eter that sequentially tests the sample reflectance and compares each

with a calibration surface°

Both NASA and the Air Force sre considering flying an experin_entai

package of this type° However, even if these flights take place in the

near future, similar experiments should be flown on other vehicles for

other vehicles for the following reasons:

I. The amount of statistical data available on reflective sur-

face performance as a result of the first flights will be

minimal° It is very important that addition_l tests of this

type be made cn other vehicles in order to increase the sta-

tistical reliability of the data°

2. Only a few different material combinations can be carried on

each flight, because several identical samples of eaci_ mate-

rial must be carried for redundancy and to allow separation

of effects.

3. It is quite likely that the first reflective surface flight

experiments will indicate possible coating improvements that

must be verified in later flights.

There are at least three methods of measuring reflective surface

degradation as a part of the experi_nenta] flight test:

6961-Finai (llI) 15
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it Direct measurement of concentrator reflectance

2. Individual reflectance devices, each carrying a single sur-

face sample

3. A multSsamp!e payload package such as that described above

The best approach depends strongly on the payload weight and

volume allowances. For example, the complete 28-sample instrument is

bulky and heavy. However, a similar, smaller device cacrying fewer

samples could be designed for nearly any vehicle° Individual sample

instruments are in some ways less desirable because they are much

heavier and more expensive per bit of data reeeivedo Ilowever, individ-

ual instruments can be located more conveniently in otherwise unused

locations on the spacecraft.

Definition of the instrumentation also depends strongly on the

number of different samples to be tested. Table 2 illustrates a typi-

cal selection of samples of interest for general concentrator appli-

cations. These include foam/Mylar, aluminum/epoxy, and epoxy substrates

with aluminum or silver reflective layers and various undercoatings

and overcoatingso For solar ti_ermionic applications, the substrate

selection could probably be limited to electroformed nickel and possibly

electroformed copper since none of the other fabrication techniques

has demonstrated adequate accuracy for thermionic purposes.

2. EXPERIS_N_ DESCRIPTION

The main design parameters of the simplified experiment are sum-

marized in Table 3o Approximately I0 test samples plus three calibra-

tion surfaces would be carried. Both solar and artificial light

sources would be used for redundancy and to provide better spectral

data° The solar rays would be reflected from a convex spherical re-

flector. Reflectance measurements would be made for four wavelength

regions as well as for the integrated solar spectrum. The spectral

data are expected to aid in deducing the causes of degradation° By

6961-Final (III) 16
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No.

2

3

4

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

20

TABLE 2

...... b_LEC_It,_ SEPAP_\TION OF E}TEC]TS

21

22

23

24

25

Reflective

Substrate Undercoat Coating Overcoat

1 Ni SiO A 1

Ni SiO A1

Ni SiO A1

Ni SiO A1

,._ SiO A1

Ni SiO A1

Ni Ag

Ni Ag

Ni Ag

Ni Ag
4

Foam/Mylar A1

Foam/Mylar A1

Foam/Myla r A1

Foam/Mylar A1

Foam/Mylar A1

Foam/My la r A1

Al/epoxy SiO A1

Al/epoxy SiO A1

Al/epoxy SiO A1

Epoxy SiO A 1

Epoxy SiO A1

Epoxy SiO A1

Epoxy A1

Epoxy A1

Epoxy A1

Si203

Si203

S i203

!ligh ¢

Hi,_h ¢

High ¢

SiO

SiO

SiO

Barrier

layer

Barrier

layer

Barrier

layer

Separation

of Effects

Surface n_ounted, _]o

shield

Partially recessed

Fully recessed

No shield

Sun shield

Parti<le sh'le_(_

No shield

Sun shield

Particle shield

Total shield (control)

No shield

Sun shield

Particle shield

No shield

Sun shield

Particle shield

No shield

Sun shield

Particle shield

No shield

Sun shield

Particle shield

No shield

Sun shield

Partic i_ shield

6961-Final (III) 17
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TABLE 3

SIMPLIFIED SURFACE COATING REFLECTANCE DEG_\DAT!ON

INSTRU>_N_ SPECIFICATION

Weight

Diameter

Thickness

Number of samples

Sample diameter

Calibration measurements:

I.

2.

3o

Type of light source:

Type of detectcrs

i0 pounds

9 inches

6 inches

i0

1o5 inches

0 percent (black cavity)

I00 percenL (qu_ctz prism)

Alu:ninized standard _irror

I. Solar (reflected from sphere)

2o Incandescent tungsten

Lead sulfide

Spectral regions detected:

i.

2o

3o

5.

Type of sample

temperature sensor

Total experiment

power required

Data transmission rate

0_30_ to 0o54_

0o54_ te 0o74_

0.74_ to !.05_

Io05_ to 2o6_

0.3_ to 2o6_

Solid state silicon temperature
transducer

< i0 watts/reading

2900 bits/reading

6961-Final (III) 18
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measuring sample temperature at several points in the c,rbit, it _il]

be possible to de,engine the ce/¢ ratio, which is required for caic,lla-

tion of minor equilibrium temperature and for estimation of thermal

gradients° Supporning science sensors will be provided for _cnitoring

the natural environment. This is necessary for proper interpretatic, n

of degradation rate_ Instrumentation requirements for the experimenn

are summarized in Table 4.

_e full 28-sample experiment is surmnarized below.

_'_C _ T "_'T'
3. FULL-SIZE SURFACE COATING P_EFLECT±MNCE DEGR_\DATION I_,IRUMEN_

SPECIr IC_TION

The interface requirements for the large solar concentrator re-

flective surfaces experiment are surmwarized below (see Fig° 4).

Electrical power required

Weight

Surface area required

Volume

Instrumentation

Telemetry accuracy required

I0 watts for i0 minu:es

25.0 pounds
2

452 in (a 24-in_ diameter circle)

3616 in_ 3 (cylinder 24-in. diameter

by 8 ino long)

5 voltages (0 to 20 mv)

30 temperatures (thermistors 0 to 5 v)

1 percent of full scale reading

6961-Final (!II) 19
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EXPERIMENT i-D

KEAT PIPE EXPERIMENT

1. B A C KGRO b_ND

The heat pipe is a device used in transporting thermal energy

from one location to another with a minimal temperature drop. The

device takes advantage of the high latent heat of vaporization of

liquid metals. At the hot end, heat is transferred to the fluid which

evaporates. The vapor is collected at the cold region whereby the

latent heat of vaporization is liberated, fhe cooled fluid is returned

to the hot end through capillary channels. Because the capillary force

is small, the presence of gravity makes it difficult to evaluate the

heat pipe performance in ground tests.

The importance of the heat pipe in advancing space power develop-

ments cannot be overemphasized. In the thermionic power application,

there are at least two areas where heat pipes can be quite effective.

For isotopic thermionic power supplies, the heat pipe can be used to

collect thermal energy from low power density fuel and deliver it in

a concentrated fashion to the diode or it can be used as a heat leveler

by supplying a constant temperature to the thermionic diode. Similarly,

it can be employed in the thermal energy storage (TE5) application where

ceramic oxide with low thermal conductivity is used. In both instances

the heat pipe can reduce the temperature drop from 200°C with conven-

tional means to msomething like 50°C. The same boiling and condensing

principle may be applied to the design of a high temperature radiator.

It was reported in Ref. ! that a vapor fin radiator may result in a

weight saving of as much as 30 to 40 percent.

Ideally, the experiment objectives should be:

i. To verify or improve the existing theory which predicts the

device performance

2. To investigate the effect of the capillary channel geometry

on the performance

6961-Final (III) 22
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3. To determine the upper and lower temperature limits and the

maximum allowable heat flux for a given fluid.

Due to the limited amount of electrical power available and the

minimum size dictated by fabrication limitation, the experiment ob-

jective will be curtailed to: Verification of performance prediction

and investigation of the lower temperature limit of a cesium vapor

heat pipe.

°

of:

EXPERIMENT DEFINITION

The equipment required for this experiment consists essentially

I. Cesium vapor heat pipe with a sheathed heater welded to one

end. The heater will be shielded to minimize heat loss.

The heat pipe is a cylinder, I0 cm long and 2 cm in diameter.

A construction detail is shown in Fig. 5.

2. Heater power control unit (HPCU)which is used to regulate

the heater power. Figure 6 shows a typical circuit for the

HPCU.

3. Associated instruments: There are 14 thermocouples required.

Twelve thermocouples are mounted on the heat pipe exterior;

2 thermocou_les are mounted on the outermost shield surface.

Figure 7 shows the thermocouple mounting locations.

The input terminals of the HPCU are connected to the thermionic

generator output. It is assumed that the generator power output of

140 watts is available, that the output is regulated, and that shunt

loads are provided to take up the excess power when the heater is run

at a lower power level, 30 watts, for instance.

The experiment will be conducted in the following manner: The

heater power will be set for 30, 60, 90, and 120 watts. At each power

level, the measurement will be made of:

i. Heat current and voltage to determine the actual power deliv-

ered to the heater

6961-Final (III) 23
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2. 7hermocouples TCI3 and TCI4 which measure the shield sur-

face temperature. Heat loss through the heat shield is

calculated from known shield area and emissivity. The net

power delivered to the heat pipe is the heater power minus

the loss.

3. Readings of thermocoup!es TCI through TCI2 will be taken

through a multichannel scanner. TCI and TC2 form a coupling

pair for the location closest to the heat source. TC3 and

TC4 form another pair 2 cm away, and so forth. Past experi-

ence indicates that at least 2 couples for a given location

are necessary. One acts as a backup and, in case both of them

are in good condition, they will provide a good average,

4. From _h_ t_mperatur_ m_asurements, the heat pipe temperature

profile can be obtained. It is uxpected that the pattern

will be similar to that shown _elow in Fig. 8.

Ld
n-
D

<[
n-
UJ
Q.

Ld

I20w

O. C _. 0 0

60w

3
30w

90_

I I I I I
6 8 IO0 2 4

DISTANCE, cm
FIG. 8 HEATPIPE PROFILEGRAPH

r
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The measured temperature profiles will be compared to

those predicted by the theory recently developed by Grover,

et al (Ref. 2).

3_

.

REFERENCES

i. Analysis and Evaluation of a Vapor-Chamber Fin-Tube Radiator

for High-Power Rankins Cycles by Henry C. Hailer, Se_our

Lieblein, and Bruce G. Lindors, NASA Lewis Research Center,

May 1965

2. The Use of a New Heat Removal System in Space Thermionic

Power SupFlies by G. M. Grover, Jo Bohdan_ky, C. A. Busse,

EURATOM Joint Nuclear Research Center, Ispra Establishment-

Italy Direct Conversion Service, 1965

EXPERI_T SPE CI FI CATIONS

Physical dimen_ions:

Weight :

Duty cycle:

Magnetic interference:

Mechanical interface:

4 in x i in diameter

3 ib (including electronics)

Electrical power requirement:120 watts (maximum) of regulated

power (assumed available from the

thermionic experiment)

30 minutes to determine effects

Some field due to dc current

Must be shielded to prevent space-

craft thermal control problems

Orbit: Any orbit
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EXPERIMENT I-E

CONCENTRATOR TEI'IPEP_TURE }_D STRAIN _IEA,+uR.E++_:.,+TS

!. BACKGROb_D

This experiment will provide an indication of the ability of the

concentrator to maintain accuracy and reflectivity in space through

measurement of skin, torus, and generator support temperature and

strains.

If the thermionic system output does not deteriorate with time,

it can be inferred that the mirror performance has not degraded. If,

however, system power output falls off, diagnostic information on

mirror performance is essential to pin doom the cause of failure°

The torus-supported shell structure is conceptually simple. Its

static and dynamic response to mechanical and thermal inputs, however,

is difficult to analyze, particularly when the generator support arms
4

are included. Measurement of the mirror's response to a varying

thermal environment in space would be extremely useful for future

design purposes. Two types of concentrator instrumentation are con-

sidered:

i. Temperature sensors to determine equilibrium temperatures

and thermal gradients

2. Strain gages to detect bending of shell, torus, or _upport

arms

A summary of the instrumentation requirements is given in Table 5.

2. EXPERIMENT DEFINITION

_ae silicon semiconductor instrumentation is recommended since it

can be attached to the concentrator with virtually no effects on per°

formance, requires only very small lead wires, and is linear over a

wide range.

Deformation of the shell and torus can be ascertained by mounting

strain gages in critical locations. The greatest effect is expected to

6961-Fina i (III) 29
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TABLE 5

Measurement Sensor Type

Temperature of

concentrator

shell and torus

Bending strain

of concentrator

shell and torus

Number Samplin_ Range
Used _late

Temperature Silicon 35 I/sec

sensors semiconductor

Strain gages Silicon 40 i/see

semiconductor pairs

6961-Final (I!I) 30
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i

occur near the rim of the mirror shell. Strains can be correlated _:ith

thermal gradients by mounting temperature sensors at various points _._n

the shell and torus and by noting the temperatures throughout the orbi_

tal cycles. Strain gages and temperature sensors would also be placed

on the generator support arms to gain some indication of the absorber

aperture misalignment and misfocus resulting from thermal deformation

of the support arms. Figure 9 shows typical locations of the strain

gages _nd temperature sensors on the shell, torus, and arms.

E_ch indicated strain gage is actually a set of two orthogonal

pairs to allow measurement of both tensile and compressive strain in

two directions. Tenrperature sensors would be placed im_aediately adja-

cent. The strain gages and temperature sensors are located to provide

at least the following information:

i. Thermal gradient from center to rim of mirror

2. Thermal gradient around torus and between torus and shell

3. Thermal gradient between shadowed (by arms) area and sunlit

area on shell

4. Circumferential thermal gradients on shell and torus

5. _ermal Nradients along support arms

6. Deformation of shell near rim

7. Deformation of torus at end near brackets

8. Deformation of torus between brackets

9. Deformation of support arms

Both the strain gages and the temperature sensors would probably

be of the silicon semiconductor type for maximum sensitivity and mini-

mum weight. Weight (or thermal mass) is particularly important on the

shell because of the possibility of local distortion.

° EXPERIMENT 5PECIF!CATION

Weight: _2 ib (for 115 gages, including leads but

not inc!uding bonding agents, etc.)

Volume: Very small, distributed, each gage is size

.of pin

6961-Final (III) 31
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Physical interface:

Data interface:

696 l-Final (Ill)

Need to be bonded with adhesive to _urface

1 bit/sec for each channel - 115 bits/sec

sampled every I0 minutes
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EXPERISIE,_, I-F

CONCENTRATOR REFLECT._NCE AN]) ANGULAR ERROR MEASUREMENTS

i. BACKGROUN_

Direct verification of concentrator performance can be obtained

from direct measurement of concentrator reflectance and angular devia-

tion of the surface.

Reflectance measurements made directly on the concentrator would

provide diagnostic information in case of a power loss from the solar-

thermionic system. Without a means of measuring concentrator refl_ct-

ance, it would be difficult to determine whether the power loss was

due to concentrator or generator degradation.

The same is true for angular deformation. Both reflectance and

angular deformation at selected locations on the mirror surface can

be measured by the devices shown conceptually in Fig. i0. These

involve small collimating light projectors that send beams of light

to the mirror surface. The beams are reflected to sensors which

detect either intensity or motion of the beams resulting from angular

deformation of the surface. The reflectance detector could be a lead

sulfide cell or silicon cell. The X-Y detector could be a lateral

photocell (Radiation Tracking Transducer) or a photomultiplier tube.

The instruments would be placed so as not to interfere with the main

experiment.

The concentrator reflectance measurement would provide useful

correlation of data obtained from the sample tests on the reflectometer

experiment. For example, the sample experiments might involve testing

several examples of the same material differing only, say, in the

thickness of the reflective coating. If one of the samples were

identical to the concentrator in terms of substrate and coating thick-

ness, material, and application method, a direct correlation could be

obtained between the small sample and a complete mirror. This would

verify the results of the sample tests.
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The predominant mission effect would be that of thermal cycling.

An orbit that involves both light and shadow would demonstrate the

most important thermal effects which occur shortly after emergence

into the sunlight.

The direqt structural and thermal measurements on the concentrator

and support arms involve only temperature sensors and strain gages

which are available and well understood. If the dire_'t reflectance

and angular deformation measurements are made, some development will

be needed on the instrument. However, since they involve no new

optical instrumentation techniques, they do not preseut severe develop-

ment problems,

I
2. EXPERImeNT DEFINITION

I The method suggested for surface angular deviation measurement

is to take the incoming solar radiation, condense, collimate, and

I filter it. Direct the collimated light beam to a preselected,

polished spot on the surface of the reflector I The angle of reflection

I of this light beam is dependent upon the angle of incidence and on the

ngle of the normal to the surface. A triangular silt will define the

I v_rtical displacement of the light beam at the sensor, see Fig. Ii.

I P.M.TUBE

I
I SL T--'

FIG. ii DETECTOR FOR ANGULAR MEASbT_EMENTS

6961-Final (III) 36



le

I

I

I

i

I
I

I
I

l
I
I

I

l

I
i
I

I
I

The sources can be artificial light if desired. It would take about

200 watts for 0.i seconds for each data point for each source.

A typical set of instrumentation could consist of one source

and 4 to 7 detectors located around the rim of the concentrator.

Source and detectors would be mounted on the concentrator torus to

avoid differential expansion problems between the vehicle and the

concentrator o

The reflectance measurement could be mounted through the center

of the _oncentrator on a rotating arm as shown in Fi_. 12.

ROTATING ARM

CONCENTRATOR

FIG. 12 CONCENTRATOR

. EXPERIMENT SPECIFICATION

Reflectiv_ty Experiment

Weight:

Volume:

Physical interface:

5 ib (including electronics)

6 in x 6 in x 6 in plus arm mechanism

Must be n_unted in center of concen-

trator, requires preflight calibration
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Data handling:

Accuracy Measurement

Weight:

Volume:

Physical interface:

Data handling:

6961-Fi_a I (III)

V_riab!e - typical 1 bit/sec

5 Ib (including leads)

Small, distributed

Must be mounted to torus, requires

preflight calibration

Variable typical 1 bit/sec for

each detector channel
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EXPERIMENT I-G

SOLAR CELL CALIBRATION TEST

i. BACKG RO D_D

One of the major problems in the design of a photovoltaic power

system is the accurate determination of the power output of solar

cells under AM_ illumination. Various methods are used, at pregnant,

to extrapolate a solar cell's performanc_ at AN = I to that of P_MO.

The best method used to date is utiiizi_ig s,_iar ceil standards that

have been flown on balloons or aircraft a_d _:alibrated to approximate

AMO conditions. However, these cells are only approximations to AMO

standards and are useful to determine the output of a solar array to

within 7 percent. Another method which is less precise than that of

high-altitude standards is the use of solar simulators which give

predicted solar array performances at AMO to within + i0 percent.

For spacecraft that are weight or area limited, it is necessary

to preciseiy determine the output of the solar array in order to

minimize either the weight and/or area of the array in order to opti-

mize the spacecraft design. Knowledte of the output of the solar

array under true A.V_ conditions would aid greatly in the optimunization

of a solar array design.

This experiment is designe_ to accomplish the following objectives:

i. Determine the AMO output of solar cells under the total

spectrum and in various bandwidths of the spectrum.

2. Obtain a set of calibrated standard cells for use in earth

(AM = I) measurements of solar arrays.

2. EXPERIMENT DEFINITION

The selection of appropriate bandpass filters for use with the

test solar cells will allow the determination of the perfoi_ance of

the solar cells in various wavelength bands in the incident spectrum.

The integration of the power output in these bandwidths would be
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correlated with the output of a solar cell seeing the entire spe_:trum

in order t determine th_ effect of filtering and spectral response

on the solar cells. Specifically, the experiment would be composed

of the following solar cell assemblies. Eight solar cells with

appropriate bandwidth filters with a minimum cutoff of less than

350 m_ to a maximum cutoff greater than 1.2_. one solar cell with a

clear coverglass (at least 125-mils-thick quartz) which would allow

the entire spectrum to be indicent upon the solar cell. No adhesives

would be used between the filter and the solar cell in order to elim-

inate the spectral effect of the adhesive. All filters would be de-

posited on 125-mils-thick fused sllica, i.e., quartz, in order to

eliminate the effect of particulate particle radiation damage. There

would be two sets of these cells (9 cells per set), one of which would

be used on the flight panel and the other would be a laboratory

standard. The flight panel must be oriented to the sun at all times

in order to obtain accurate data.

In order to obtain a reliable laboratory standard for use at earth

test stations, it is necessary that the flight and laboratory test

assembly be accurately matched for all parameters before the actual

flight testing. _ne cells must be matched for temperature sensitivity,

spectral response, and general overall performance. These matching

tests can be performed either in the laboratory under solar simulation

or at the Table Mountain test site, Table Mountain, California. The

bandpass filters must also be matched for both the flight and laboratory

standards.

_le flight specimens will be mounted on an orientable array in

order to obtain normal incidence of the osolar illumination. The test

solar cells shall be 2 x 2 n-on-p solar cells, i0 ohm cm with a series

resistance of less than 0.4 ohms. The bandpass filters will be chosen

to cover the range of 350 m_ to 1200 m_, i.e., tile overall response

range of a solar cell. Thu E-I Characteristic Curve of each test

specimen will be recorded and then used to calibrate th_ earth stand-

ards for AMO performance (see Fig. 13 for schematic).
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3. EXPERIMENT SPECIFICATION

The interface requirements for the solar cell requirement (assum-

ing a total number of 9 solar cells) are surm_arized bwlow.

Electrical power required: 0.2 watts for operation of 9

thermistors; 2 watts to vary load

line

Weight: Less than 0.5 ib

Size: 15 sq in x approximately 1 in deep

Instrumentation: 9 voltages (0 to 1 volt);

9 temperatures (thermistors 0 to 5

volts); II0 bits/sample

Telemetry accuracy required: 1 percent of full scale reading

_o
The experiment must be sun-oriented within approximately m

Thermal: -30°C to +70°C
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EX_E RIMEN_f I-H

SOLAR CONSTANT OF THE SUN

1. BACKGROUND

The solar constant is the total radiant energy flux per unit area

from the sun at the mean distance of the earth, and is fundamentally

important to understanding the solar energy budget in the design of a
9

solar power ';y_tem. A numerical value of 1.94 cal/min cm - or 1350

watts/meter 2 was generally accepted until Johnson made some measure-

o
ments _ahich indicated that 2 cal/min cm - is a better estimate, and

now this is the generally accepted value.

These values were derived from measurements made from within the

earth's atmosphere and since the atmosphere is _ompletely opaque to

large portions of the ultraviolet and infrared, considerable correc-

tions are applied to the experimental results.

At present the solar constant is known to a i 2 percent accuracy

(see Fig. 14). The satellite heliometer developed by NASA/Goddard

indicates an accuracy of ± 0.2 percent is achievable; and with this

accuracy observations of the variations in solar output are possible.

2. EXPERIMENT OBJECTI\rE S

This experiment is designed to accomplish the following objec-

tives :

I, Measure the solar constant with i 0.2 accuracy

2. Monitor variations in the solar constant

3. EXPERIMEh_ DEFINITION

The method used to measure the solar constant is a blackbody

exposed to the sun. The equilibrium temperature of the isolated body

is recorded and telemetered back to earth_ The energy balance of the

black detector is governed by the Stefan-Boltzmann law:
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whe re

s

W = _T_

W = total energy flux

= o_=_fan-Boltzmann constant

T = temperature

The value of _ is a well known constant; therefore, the variables are

energy flux and temperature.

In the experiment to achieve the desired accuracy, the blackbody

will depend mainly on the geometry of the cavity, not on surface coat-

ings such as paints or coatings_

A conceptual drawing of the detector assembly is sho_rn in Fig° 15.

The possible error in the measurement caused by r_isalignmen_ of

the blackbody with respect to the sun is shown in Fig_ 16. The angle

is the angle between the satellite-sun line and the normal to the

aperture. In the equation, cos_ can be taken equal to unity if tile

pointing accuracy is better than + 1 degree. Yhe experiment can be

performed equally well with a lower accuracy of orientation, but then

must be recorded and taken into account in the data reduction.

4. EXPER!MEN_ DESIGN

The temperature sensor must truly average over the whole sphere;

this requirement favors the metal film bolometer. Aluminum is depos-

ited in spiral form on the outer surface of the blackbody and serves

a dual function, as a bolometer and as a thermal radiation barrier.

In the expected temperature range of 120 ° to 130°C, metals exhibit

temperature coefficients in the order of 0.004/°C. They are very

stable and well suited for the environmental conditions of outer space.

The blackbody could be made also of plated material forming a junction

of a thermocouple. The metal bolometer, however, is capable of abso-

lute temperature measurements and allows the use of alternating bridge

currents, which is more convenient in electrical circuitry. To mea-

sure the temperature T 1 accurately to I/i0 degree, which is necessary
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to maintain an overall accuracy of 0.2 percent, requires a resistance

measurement of 4 x 10 -4 . fhe voltage change of a bridze with equal

branches is 1/2 the resistance change and, therefore, the unbalance of

-4
the bridge voltage has to be sensed to 2 x I0 or to 200 Zv if one

volt is fed to the bridge.

A block diagram of the circuit is shown in Fig. 17. The tempera-

ture of the thermostat, T2, may be telemetered only once each orbit to

indicate proper operation. A certain redundancy is provided if both

signals, T 1 and ST, are telemetered. In practice it is convenient to

have different ranges assigned to each channel as sho_n in the diagram.

Requirements on the stability of amplifiers and ether electronic conpo-

nents are moderate and well within normal instrumental standards.

. EXPERL_NT/:_P_CECRAFT II_2EP_VACE REQUIP_EMENTS

The nominal interface requirements for the solar constant experi-

ment are summarized below.

Electrical power required:

Weight:

Size :

Instrumentation:

1.5 watts at 28 volts

1.0 lb detector assembly

1.0 Ib electronics

Detecter 4" x 3" x 3"

Electronics 6" x 2" >: 6"

5 voltages (0 to 5 volts)

Telemetry accuracy required: • 0.5 percent full scale reading

Sample time: Once per orbit

i00 bits/sample

Orientation required: Experiment should be sun-oriented

within ± 0.5 degree
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EXPERi_IEN T I-I

MEASD_REME_T OF SPECTRAL DISTRIBUTION OF SPACE Sb_L!GHT

i. BACKGROUND

This experiment measures the spectral distribution of space sun-

light by means of filtered photovoltaic solar cells. Spectral selection

is accomplished through the use of interference filters with suitable

blocking absorption filters. The region to be measured extends from

4000 to II,000A and is divided into 14 channels.

At the time of fabrication of these devices, i0 sets of identical

sensors are prepared. _le flight package and a possible back-up

package provide the primary telemetered information. The other eight

14-channel sets can be utilized for calibration of simulators and to

provide a supplement of the telemetered data issuing from the primary

cells.

Silicon cells have been used to power satellites since the very

earliest space experiments (Vanguard, 1958). They have proven to be

extremely reliable devices with highly predictable characteristics.

In the proposed experiment, these devices are to be used in a properly

spectra!ly-modified manner in a muitichannel spectrometer to determine

the spectral distribution of sunlight in the visible and near-visible

region. Previous measurements of the solar spectral distribution have

been made in the determination of the solar constant by the Smithsonian

Institute over a period of approximately 30 years (Ref. i). These

measurements were made from the earth surface, usually in locations

of high altitude, and the solar constant was obtained by using an air

mass extrapolation. Obviously, such an extrapolation was meaningful

only if some energy was able to reach the sensing bolometer in the

spectral region of interest. Subsequent measurements outside the

atmosphere were made by F. S. Johnson (Ref. 2). The data of Johnson

is based upon his own high-altitude rocket measurements, the data of

Dunkelman and Skolnik (Ref. 3), and of Perry Moon (Ref. 4), see Fig. la.
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The use of data from different investigations in the different spectral

regions required the adjustment of absolute values in the overlap bands.

It is, therefore, desirable to obtain a measurement which extends over

at least t_o of the regions in the Johnson determination.

2. DESCRIPTION OF THE INSTRUMENTATION

Solar cells have a spectral response as shown in Fig. 19 in the

near-visible region the onset of sensitivity occurs at approximately

3500_ rising to approximately 60 percent at 5000_, peaking at approxi-

mately 8500A, falling off rapidly beyond the peak and going to zero at
o

approximately 12,000A. _%ile it would be most desirable to have rec-

tangulardbandpass filters for use with the sensor devices, this is,

unfortunately,nnot within the present state of the art. Optical inter-

ference filters with suppressing of harmonics by use of absorption

blocking filters have become commercially available within the last

2
i0 years. The use of silicon energy converters of 2 cm area will

permit a sufficient amount of electrical signal to modulate telemetry

with little electronic complication. The current voltage character-

istic for various energy inputs can be seen in Fig. 20. It may be

noted that the short-circuit current is a linear function of the

illumination level under consideration. Thus by operating each optical

channel into a low-impedance load, such that the photo current output

is close to short-circuit current, bne may directly modulate each

telemetry channel. To satisfy the linearity consition, the best choice

would be a telemetry modulation between zero and i00 MV. Near the

extremes of wavelength response, this could be achieved by having

2 cm 2 of photovoltaic active area perdevice operating into a 1 kilo-

ohm impedance. This assumes that filters allowing transmission of

50 percent of the desirable light wavelength are used.

Due to the considerable amount of information that has become

available, both as a result of space experience and as a result of

ground testing, the performance of solar cells and glasses in radiation
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environments is highly predictable. Figures 21 and 22 show short-

circuit current degradation and spectral response degradation as a

function of integrated flux. Degradation of these parameters becomes

severe after considerable exposure, which implies long storage in a

radiation environment. Since the instantaneity of information arrival

is determined only by the telemetry rate, the desired information can

be obtained in the very early stages of the experiment; therefore,

energetic _article degradation need not be a factor adversely affecting

the experiment.

If one wishes to examine the long-term stability of solar spectral

intensities, radiation degradation would become a detrimental factor

after some time. Degradation of the pertinent parameters must be

evaluated in terms of storage in space, i.e., length of mission, and

appropriate estimates of error may be made.

The multichannel optical spectrometer which is proposed here is

an extremely simple instrument. Each sensor is self-powered and weighs,

with filter and appropriate optical encapsulation, approximately 5 gr_s.

For purposes of better control_ it is recommended that a cell filtered

only by equivalent thickness of glass be added to the 14 spectral chan-

nels. This will allow an integration of the total amount of light seen,

in addition to providing for an assessment of the effects of temperature

and radiation degradation. A separate temperature measurement for the

common isothermal substrate is also recommended. Electric and magnetic

fields are not expected to have any effect upon this experiment.

While the close matching in selection of solar cell filter com-

binations, in order to result in matched sets, may appear to be a

formidable problem, this is actually not the case. The only regions

of spectral response that must be matched within a particular wave-

length band set encompass a single wavelength interval. _nus, a set

of I0 cells must be selected, for example, to have relative spectral

responses which are nearly identical over a wavelength interval from

4000 to 5500_. Manufacturing experience has taught that this is not a

difficult problem.
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The electronic circuitry consists only of a progran_ning-control

unit to scan the sensors periodically. The sizes of the cells have

been chosen so that the outputs will not require amplification and

can go directly to telemetry.

. INSTRUMENT SPECIFICATIONS

Physical dimensions:

Weight:

Electrical power

requirements:

Duty cycle:

Dynamic range:

Magnetic interface:

Thermal interface:

Mechanical interface:

Orbit:

3 in x 7 in x 2 in

i ib

28 volts (nominal); I0 mA during

scan, 0 mA standby

2 seconds scan time; 1 hour standby

0.4 to i.i_ in 140.05_-bands

None

None (cells are mounted on a 0.125-

inch-thick A1 plate to ensure all

are at the same temperature)

Must be mounted facing the sun

Modified sun-synchronous is a slight

preference; experiment can be flown

in any orbit so long as sensors face

the sun (to within a few degrees) for

a few seconds at i- to 2-hour inter-

vals

References

i.

2_

3.

.

L. B. Aldridge and W. H. Hoover, "The Solar Eonstant," Science 116,

3 [1952)

F. S. Johnson, "The Solar Constant," J. Meteorol. 11, 431 (1954)

L. Dunkelman and R. Skolnik, "The Solar Spectral Irradiance and

Vertical Atmospheric Attenuation in the Visible and Ultraviolet,"

J. Opt. Soc. Amer., 4_99, 356, (1959)

P. Moon, "Proposed Standard Solar Radiation Curves for Engineering

Use," J. Franklin Institute, 23___0,583, (1940)
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EXPE RI-_ h_f !-J

EVALUATION OF CON_EN_flONAL BATTERIES IN ZERO GR_.VI_Y

I. _ACKGROU_

A major portion of a space power system is the energy storage

unit--usually conventional batteries (AgO-Zn, AgO-Cd, or NiCd). All

the effects of space enviro_men_ on these batteries can be readily

obtained in the laboratory except that of zero gravity. As long ago

as 1958 (Ref. I) it was pointed out that certain processes in a bat-

tery are gravity sensitive. Briefly, the portions of a battery mech-

anism that are gravity dependent are the mass transport of ions and

electrolyte, the solution and dissolution of matter or species within

the electrolyte, and the effect of gases that are generated during

charge, overcharge, overdischarge, and corrosion of anodic electrodes

that will not separate from the electrolyte.

Up to the present time, the instrumentation on batteries for

space applications has been minimal (voltage, charge-discharge current,

temperature) and any data applicable to solving or better defining the

above effects is nonexistent_ Therefore, to obtain some of these

answers the following experiment is suggested_

2_ EXPERI_h_ DEFINITION

The experiment will utilize the near-zero-gravity environment pro-

vided by the JPL spacecraft. Conventional batteries will be packaged,

instrumented, and installed to determine the extent of zero gravity

effects on the life cycle, individual electrode polarization, and over-

charge gas recombinations. The experiment will be conducted with

commercially available batteries by implanting a reference electrode

to determine individual electrode polarization and a pressure trans-

ducer to determine pressure within the cell. The experiment will be

cycled repeatedly in zero gravity and the individual electrode will be
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monitored to determine its voltages and currents. Recombination

studies will be conducted by progressively increasing the overcharge

current and by monitoring the internal pressure within the cell. The

cell will be cycled for a specified period of time on an established

charge-discharge regime, and the polarization _nd recombination mea-

surements of the individual cells repeated.

The experiment will be conducted in parallel with standard tests

to show the effects of zero gravity on these areas.

° EXPE RIPFE_f SPECIFICATION

Dimensions:

Weight:

Power:

Thermal:

Data:

Preferred orbit:

8" x 7" x 6"

i0 pounds

5 watts, continuous

+I0°C to +40°C

150 bits/min (continuous or cycled every

5 minutes)

Any

.

Reference

Morris Eisenburg "The Effect of T, ._, _,,elo_tlessness on the Performance

of Batteries and Fuel Cells," Proceedings !2th Annual Battery

Research and Development Conference, 21-22 _y 1958
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EXPERI}ENT I-K

EVALUATION OF REGENERAfI'TE HYDROGEN-OX-fGEN

FUEL CELL IN ZERO C_>_VITY

1. BACKGROUND

The rechargeable fuel cell is basically a combination of ]12!O 2

fuel cell and a water electrolysis cell in one compact package (Ref.

I). During the charge mode of operation, water contained within an

asbestos matrix, separating the electrodes, is electrolyzed to pro-

duce hydrogen at the anode and oxygen at the cathode. The gases

evolved are stored in appropriate integral tank[;. During discharse '

the stored gases are recombined to form water which returns to tile

asbestos matrix. In thi_ concept, the electrolyte liquid is "inunobi-

lized" in the matrix and the reactant gases enter and leave the back

side of the porous electrodes.

A multicell unit is constructed by stacking bipolar plates having

appropriate gas manifolding. The cell stack is placed within a cylin-

drical storage vessel having a partition to divide the 02 and H_ gas

storage sections. A volume-compensating bellows is provided to assure

that the 2-1 volume ratio is maintained, since it is desirable to

avoid differential pressures°

No actual long-term zero-gravitv experiments [lave been conducted

on the regenerative cell, but preliminary work by Allis Chalmers for

the Air Force concluded that the units are not gravity-sensitive.

Therefore, the purpose of this experiment is to discharge the

regenerative fuel cell in a long-term zero-gravity environment to

demonstrate the capillary action and verify that there is no gas-liquid

mixture. Also, on charge the unit would demonstrate the ability of

hydrogen-oxygen electrolyzer systems to function in zero gravity withou=

the problem of gas-liquid separation. The cycling of a unit of this

type in long-term zero gravity would demonstrate the capabilitie_ of

the regenerative fuel cell and remove an important unknown in its do-

ve lopment.

Ref. ! "]The EO.q }{2/02 _qecondary Battery," Contract NAq3-2781
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2. EXPERISIENT DEFINITION

The basic unit of this experiment is a 75-watt, 6-cell battery

(see Fig. 23). In actual ground tests it develops 90 watts and has a

capacity of about i0 amp hours.

Extensive ground tests h,ave been conducted on this unit and the

present performance capabilities are shown in Table 6. Typical charge-

discharge cycle data are shown in Fig. 24 for this 6-cell unit. This

nominal cycle is for a 300-nautical-mile orbit, i.e., 65 minutes of

charge and 35 minutes of discharge. The linear pressure rise and de-

cline with the flat charge-discharge characteristics are evident in

Fig. 25.

TABLE 6

PRE SE_i' PERFOR_\NCE

Watt hours per pound

Amp hours per pound

Operation temperature (maximum)

Power level

Thermal sterilization capability

Cycle life

Operating current density

Overload capability

i0 to 12

16

350°F

Ii0 watts

Sterilizable

> 300 full depth

I00 ma/cm 2

2:1

. EXPERImeNT SPECIFICATION

Dimens ions :

Weight :

Powe r :

Thermal :

Inst rumentat ion :

Data:

Mounting:

Preferred orbit:

8" diameter x 9" length

15 pounds

i0 watts charge

50°C to +175°C

2 pressures, 6 voltages, 2 temperatures

(0 to 5 volts)

120 bits/min continuous

Not critical

Any
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EXPERIMENT I-L

RADIATION EFFECTS ON SOLAR CELLS

(This experiment was taken from the G. E. Report)

I. BACKGRO L2_D

Of all the components found on present state-of-the-art spacecraft,

the solar cell array generally exhibits the highest vulnerability to

space,radiation damage. As a result, considerable attention must be

given, when designing a space vehicle, to the shielding required to

protect the solar array from the ex_ected space radiation environment.

The required shielding and oversizing of _he solar array to account

for the expected radiation d_.a!_e __an represent a very significant

weight penalty. To minimize this'weight penalty, it is important to:

(a) know the radiation environment accurately, (b) thoroughly under-

_tand the effect of radiation on solar array performance, and (c) be

able to accurately predict the protection afforded by shielding.

However, present methods of predicting damage are approximate and, in

addition, a large undertainty in the e:_:pected cnviro_nent exists.

Space experiments are needed to better understand this problem and to

provide the necessary design information.

The normal solar array configuration consists of solar cells

covered with a fused silica coverglass, l_le coverglass shields the

solar cells from the radiation environment. A filter is vapor-depos-

ite_ on the coverglass, which is held to the solar cell by an organic

bond. Each of these four components: solar cell, coverglass, filter,

and organic bond to some degree exhibit a damage vulnerability.

In general, solar cell damage results from lattice defect produ_ -_-

tion generated by collisions between higher energy particles and the

lattice atoms. This produces a reduction in the minority carrier

lifetime which lowers the short-circuit current.

Degradation in the organic bond results from a change in its

chemical composition induced by ionizing interactions with the incident
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radiation. Similar ionizing interactions with ultraviolet and particle

radiation cause reduction in the transmittance of the filter and fused

silica shield. These other effects, then, also degrade the sh)rt-

circuit current since they reduce the amount of light reaching the

cell surface.

This experiment is designed to accomplish the following objectives:

I. Separate and determine the relative importance of damage in

the solar cell, organic bond, filter, and shield.

2. Determine the relative degree of protection afforded by

shielding of different thickness and provide evidence on

the "hardness" of the incident spectrum.

3. Monitor the spacecraft solar array degradation.

4. Verify, or provide information for correcting, laboratory

damage estimates to improve the fefficiency of solar array

design.

2. EXPERIMENT DEFINITION

The selection of appropriate combinations of components for the

solar cell assembly will allow damage in either the cell, shield,

filter, or bond to prevail in producing degradation in the short-

circuit current. Therefore, the experiment would contain various

combinations of shield, bond, etc., to allow a determination of the

relative significance of damage in each. Shields of varying thickness

would be used to indicate the effectiveness of this parameter on radia-

tion hardening and the hardness of the incident spectrum. To complete

the complement, cell assemblies, identical to those in the spacecraft

array, would be included for the purpose of monitoring the array

degradation. Specifically, the experiment would be composed of these

solar_cell assemblies.

Type A Assembly

This assembly would consist of solar cell and shield with no filter

or bond. The shield would be mechanically clamped to the cell and any
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degradation in the short-circuit current would be due mainly to cell

damage induced by the residual spectrum. There would be two Type A

assemblies present; the shield on one would be 6 mils thick while the

other would be 60 mils. Comparison of data for these two shields

would indicate relative shield effectiveness and the incident spectrum

hardne s s.

Tfpe B Assembly

This assembly would consist of a pre-irradiated solar cell,

shield, and filter with bond. Pre-irradiation of the solar cell would

render it relatively invnune to additional damage, therefore, any deg-

radation in the output _uld be due mainly to damage in the shield,

filter, and bond.

Type C Assembly

This assembly would consist of a pre-irradiated solar cell, bond,

and shield with no filter. Therefore, degradation in the output should

be due solely to damage in the bond and shield. A comparison of data

from this assembly with data from Type B would indicate the amount of

damage incurred by the filter.

l%ype D Assembly

This assembly would consist of a pre-irradiated cell, with shield,

filter, and no bond. Therefore, degradation in the output should

result mainly from dam%ge in the shield and filter. A comparison of

data from this assembly with Type B would indicate the degree of damage

incurred by the bond.

Type E Assembly

This assembly would consist of a pre-irradiated cell and shield

with no filter or bond. Any degradation occurring greater than approxi-

mately 5 percent would indicate damage in the shield

Type F Assembly

This assembly would be representative of the vehicle array. It

would contain identical bonding, shield thickness, filter, and cells.

Therefore, this data would be used to monitor the vehicle array
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degradation. Also, comparison with data from Type B would indicate

the degradation that would be suffered by the cell alone.

In an experiment of this nature, duplication to gain statistical

confidence in the data is a necessity since no two samples will exhibit

the same damage sensitivity. Therefore, in order to gain sufficient

duplication using one vehicle, a scheme has been adopted which utilizes

ten 1/2 by 1/2 cm solar cell segments connected as shown in Fig. 26.

Each segment for an assembly would be cut from a different 1 by 2 em

cell. The remaining segments cut from the cell would be used in other

assemblies. Every assembly would then consist of segments from I0

different cells, however, the total output for each of the assemblies

would represent the average of the i0 cells. T_is is equivalent to

using identical cells on each assembly and duplicating the entire

experiment I0 times. The segments in an assembly would be mounted in

thermal contact with, but electrically insulated from, a common base

plate. All would be covered by a single shield and filter piece. If

V T is the voltage across the total string and V. is the voltage oni

each cell, then

i0

V T = _ V i

i = i

To measure the short-circuit current, a l-ob_n resistor would be con-

nected across each segment. Therefore, the average short-circuit

current would be

_ V T
1 ---- --

sc i0

Then only one quantity, VT, must be measured to obtain the average

short-circuit current for the I0 segments and the same statistical

validity is obtained as if i0 separate cell assemblies were exposed

and measured separately. This scheme enables each assembly to be

effectively duFlicated I0 times with no increase in the number of
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readings required and an increase it, required surface area of only about

2
i cm Althou_h the size of a segment is 1/8 that of a normal cell,

no insurmountable mounting or soldering problems are foreseen since

the technology in this area is well advanced.

The short-circuit current is a temperature sensitive quantity

and, since variations in temperature are expected, the requirement for

temperature information exists, iffall the assemblies were mounted on

a good com_m_n thermal sink, all the cell temperatures should be approxi-

mately equal and only the sink temperature would have to be measured

Solar cell output is also sensitive to sun orientation, i_nc ex-

periment would be sun-oriented making use of the orientation system

employed by the primary solar thermionic experiment. Since measure-

ment of the orientation accuracy will be required for evaluation of

the solar thermionie experiment, this information would be available

for the secondary experiments as well.

3. EXPERIMF_NT SPECIFICATIONS

The interface requirements of the solar cell experiment (assuming

a total number of 7 solar cell assemblies) are summarized below.

Electrical power required: 0.04 watts for operation of 2

thermistors

Weight: Less than 0.5 ib

, Size: 4.5 in 2 by 1 in deep

Instrumentation: 7 voltages (0-50 mV); 2 temperatures

(thermistors 0-5V)

Telemetry accuracy required: 1 percent of full scale reading

_o
The experiment must be sun-oriented within approximately =
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EXPERI_IENT I -M

VEE-RIDGE (G.E. EXPERE_h_f)

I. BACKGROU hrD

Solar photovoltaic arrays are currently the major means of supplying

electrical power in space and are expected to be the best source of power

for many missions in the future. The state of the art has evolved to the

solar-oriented flat paddle of the Ranger, Y.ariTler, ::imbus, and OGO systens_

The present paddle designs will continue tc be impreved with the use ¢_f

more efficient and more radiation resistant solJr cells and other inn_va-

tions. However, an advance in the state of tLe art of photovoltaic arrays

to the use of V-ridge concentrators offers two potentially significant

advantages: (i) a weight saving of 15 to 30 percent, and (2) a decrease

in cost of up to 45 percent. The V-ridge reflective surfaces result in

more solar energy being concentrated on the solar cells. This allows

more power to be obtained from the same number of cells. This means a

given power output can be achieved with a smaller number of solar ceils,

which accounts for the reduction in cost. Since the concentrating sur-

faces are lighter in weight than the solar cells they replace, this also

yields an overall decrease in weight.

In the past three years, several companies, including General Elec-

tric and Boeing, have successfully developed and ground tested experir_e:_t_l

V-ridge concentrating modules. The major uncertainty remaining is what

effect, if any, will the space environment have on the perfornance ¢,f the

concentrator surfaces. A space experiment is required to find the ans_er.

This experiment is designed to verify the space performance of a typical

photovoltaic array employing V-ridge concentrators. Of particular intercept

are the effects of ultraviolet radiation, ionizing radiation, n_icro_eteor-

ites, and thermal cycling on the performance of the reflecting surface_.

2. EXPERImeNT DEFINITION

The selection of appropriate combinations of solar cells and concen-

trator surfaces will enable separate determination of solar cell perf_rr_a_e
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for both concentrated and nonconcentrated cases; and separate determina-

tion of any solar cell or concentrator performance degradation. The

experiment would be composed of three assemblies (see _ig. 27).

Type A Assembly - This assembly would consist of a tS-pical V-ridge

concentrator panel from which temperature and power output measure-

ments would be made.

T)_pe B Assembly - This assembly would be a nonconcentrating section.

Power output and solar cell temperature would be measured. A com-

parison of the performance between Assemblies A and B would pro-

vide a measure of the concentration ratio. Also, the data fron_

these t_o assemblies would allow the solar cell perfc_r_ance t_ be

factored out and the concentrator p_rformance isolated.

Tzpe C Assembly - This assembly would be identical to the Type A

section but smaller. Solar cell temperature and short-circuit

current would be _asured. Since short-circuit current is primarily

dependent on energy impinging on the solar cells and not cell

temperature, it is another t-easure of concentrator degradation.

3. EXPERImeNT/SPACECRAFT REQUIRE:,IENT S

The interface requirements for the V-ridge concentrator experi_:ent

are summarized below:

Electrical Power Required 0.16 watts (8 thermistors at 20 n_

per thermistor)

Weight 2 pounds
2

Surface Area Required 130 in
3

Volume 260 in

Instrumentation 6 voltages (0-6.4 volts) 8 tempera-
tures (thermistors 0-5v)

Telemetry Accuracy Required 1 percent of full scale reading

The experiment must be sun-oriented with an accuracy on the order of

_3 degrees. It is also desirable to have a n_easure of the orientation

accuracy. This could be obtaiued from the primary experiment.
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EXPERI] _NT I-N

THIN -FII_'ISOLAR CELLS (G .E. EXPERI_N_£)

I • BACKGROUND

The development of high efficiency, thin-film solar cells could

result in extremely lightweight space power systems. Consequently,

research and development of thin-film cells is presently receiving con-

siderable attention. However, this work is still in a very early st_tc

of development. This is true both from the standpoint of the theoretical

_mderstanding of thin-film cell operation and also from the stondpeint c_f

materi@Is and fabrication techniques for making usable cells for space

experimentation and application. A brief s}_nopsis of the present st::te

of the art of thin-film solar cells is given below, and will serve ss

a background upon which a space experiment will be defined. The materials

being most aggressively investigated at present are cadmium sulfide (_idS),

cadmium telluride (CdTe), and to a lesser degree, gallium arsenide (GaA!_)

and silicon (Si). Several techniques are being pursued in fabricating

the CdS cells.

The development of fabrication techniques for thin-film GaAs and

silicon cells are such that they cannot be considered for a space experi-

ment at this time.

The laboratory work that has been done on the radiation effects on

CdS and CdTe cells indicates that these cells are very radiation-resist_nt.

Some tests results on CdS cells, fabricated by the techniques described

previously, are given below.

Tests with electrons ranging in energy from 0.6 to 2.5 Hey show

degradations of only five to ten percent for doses of 1017 electrons per

square centimeter. Similar results are seen for protons ranging in ener,_v.
15

from 2 to I0 Mev for doses of i0 protons per square centimeter. These

are extremely high radiation doses for space application. Ho_¢ever, an

interesting aspect of the electron irradiations, was that for doses above

approximately 1016 electrons per square centinmter, the effects of the
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radiation appears to be very dose rate dependent. Degradations of 50 t_

90 percent have been seen immediately after an irradiation of 1017 ele_ _-

trons per square centimeter at a high dose rate. Complete recovery of

the cells occurred, however, within a few days after the irradiation

with the cells exposed to room ambient light and under no load. This

recovery shows a strong dependence on cell loading during the annealing.

A space experiment with CsS and CdTe cells could shed light on a

number of questionable areas. For example, will the moisture degradation

for at least one type of CdS cell be a problem, or will the cells quickly

recover once they are in space, regardless of the previous moisture de-

gradation history? Will the CdS be stable in tile combined space envir._n -

ment of deep vacuum, ultraviolet radiation, particle radiation, and

ten_perature; or will a prote'ctive coating have to be applied to st_bilize

the surface? Are the cells stable against the low dose-rate space par-

ticle radiation while under full solar illu_.ination and power loading

conditions? Do the cells have to have some minimum shielding against

the intense, very low-energy particle radiation? Will micrometeorites

create an erosion problem on unshielded film surfaces?

A space experiment can be designed that would attempt to answer

some of these questions for the CdS and CdTe cells. Specifically, the

objectives of the experiment would be to investigate:

i. The recovery of moisture degraded cells in space

2. The effect of intense low-energy particle radiation and

micrometeorites on thin film surfaces

3. The need for surface stabilization against evaporation

in the space environment

4. The effect of low dose-rate energetic particle radiation

on cell output

5. An accurate determination of thin-film cell efficiencies

in space.

2. EXPERIMENT DEFINITION

The experiment would be composed of various combinations of cell

assemblies, surface coatings, and shielding in order to investigate
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the above listed objectives. Specifically, these cell assemblies

would be :

C_o cellType A Assembly - This assembly would utilize the Type A _c

described previously. The cells would be encapsulated in Dupont

H-film and would not have suffered moisture degradation prior to

launch. No additional shielding would be used. This assenbly

would indicate the stability of this cell type and construction

in the space environment. It _ould also measure the space con-

version'efficiency of this cell t_pe.

Type B Assenlbly - This assembly would utilize the Type A CdS cell,

however, it would not be encapsulated and would have had con-

siderable moisture degradation prior to laui_;_h. The assembly

would be shielded, however, to prevent low energy particle radia-

tion and micrometeorites from impinging on the film. The shield

would be mechanically clamped over the cell assembly. The degree

of recovery of this assembly in space would give a measure of the

need for ground protection against degradation.

Type c Assembly - This assembly would also utilize Type A CdS cells_

The cells would be encapsulated with an evaporative material to

prevent moisture degradation prior to launch. The films would also

have a surface coating such as SiO 2 to stabilize the surface against

evaporation in space. A mechanical shield similar to that in Type B

assembly would also be used. This assembly would test the stability

of the films in space.

Type D Assembly - This assembly would also utilize Type A CdS cells.

The cells would be encapsulated in an evaporative material to pre-

vent moisture degradation prior to launch. No shield would be used.

This assembly would expose the film surface to the space environ_ent

of low energy particle radiation and micrometec_rites and would give

a measure of the effects of this environment on cell output.

Type E Assembly - This assembly would utilize the Type B CdS cells.

No shielding or surface coatings would be used. This assembly would
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give an indication of the effect of the space environment on this

cell type and would also measure its space conversion efficiency°

Type F Assembly - This assembly would utilize the Type B CdS cells

with a shield similar to that used in the Type B assembly to pre-

vent low energy particle radiation and micrometeorites from im-

pinging on the film surface. This assembly would indicate tile

degree of evaporatibn of the film in space.

T_e G Assembly - This assembly would be tl,e same as Type F except

a surface coating would be used to stabilize the films from evap-

oration. This assembly x_ould serve as a reference for asse_blies

Type E and Type F so that the radiation, micro_teorite and evap-

oration degradation could be related.

T_-pe H Assembly - This assembly would utilize Type C CdS cells.

No shielding would be used. This assembly _;ould indicate how nell

this cell type could withstand the space environment and would also

give a measure of its space conversion efficiency.

Type I Assembly - This assembly would utilize the Type C CdS cells,

with a shield similar to that used in the Type B assembly. This

assembly along with the Type H assenbly would give a measure of

the effects of the radiation and microneteorite environment on

cell output.

Type J Assembly - This assembly would utilize the CdTe cell. i_o

shielding would be used. This assembly would indicate how well this

cell type can withstand the space environment and would also give a

measure of its space conversion efficiency.

Type K Assembly - This assembly would utilize the CdTe cell with a

shield similar to that used in the Type B assembly. This assenbly

along with the Type J assembly would give a measure of the effects

of the radiation and micrometeorite environment on cell output.

3. EXPERI!_NT/SPACECRAFT INTERFACE REQUIRE_iEI_S

The interface requirements for the thin-film solar cell experirent

(assuming a total of eleven assemblies) are estimated as follox_s:
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Electrical Power Required

Weight

Surface Area Required

Instrumentation

Telemetry Accuracy Required

0.04 watts (2 thermistors _t

20 mw per thermistor)

Less than 0.5 pounds

30 in 2 (i0 in. x 3 in.)

ii voltages (0-50 mv)

2 temperatures (ther_nistors 0-5 v)

1 percent of full scale reading

The experiment would have to be solar-oriented and the solar erien-

tation error measured.
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i. BACKGROUND

One of the potentially _ttractive means of supplying electrical

power in space is by means of solar thermoelectrics. In the flat

panel, solar thermoelectric generator design, heat from the sun is

used to provide the temperature difference between the hot and cold

junctions. A sandwich type construction is used wherein the thermo-

electric elements are bonded between two thin aluminum sheets. One

sheet, called the collector, is coated to produce a surface baying a

high solar absorptivity and a low infrared emissivity. This side of

the panel is oriented toward the sun, absorbs ener_, from it, and

produces the hot junction temperature. The heat absorbed is partially

converted into electrical energy, and the remainder is transferred

through the thermoelectric elements to the cold junctions and radiated

from the other side of the panel.

The objectives of this experiment are:

i. Demonstrate the feasibility of solar thermoelectrics as a

means of supplying space power.

2. Conduct a Ion S term evaluation of a solar thermoelectric

power supply in the space environment.

2. EXPERIMENT DEFINITION

A spacecraft designed to conduct a solar thermionic flight ex-

periment offers a very attractive platform for evaluating solar thermo-

electrics. Unlike the space experiments conducted to date, the panels

would always be oriented to the sun when the spacecraft was not in the

earth's shadow. In addition, measurements of the solar intensity,

radiation environment, orientation error and micrometeoroid density
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would be available from the primary solar thermionic experiment. Ther_-

fore, the solar thermoelectric experiment would only require the adJi-

tion of temperature and voltage instrumentation to provide a more cot_-

plete evaluation than was possible from previous space experiments.

The experiment would consist of three, solar thermoelectric paaels.

Each of these samples would be approximately 4 inches by 4 inches by

0.115 inches. In each panel, a row of six n-type elements alternates

with a row of six p-type elements. The elements in adjacent pairs of

rows are connected in an electrical parall, 1 circuit, and the three

pairs of _-ows are connected in series. A wiring diagram is shown in

Fig. 28.

Three panels would be used to all_,, evaluation of relative per-

formance between samples and also to improve the changes of obtainin_

performance data over a long period (months) of time.

The power output for each sample is determined by measuring the

voltage drop across a precision resistor located in the electrical

circuit. In addition to the required voltage measurement, four tem-

peratures would be measured on each panel (two on each surface). The

orientation of the panels to the sun would be accomplished by the same

Orientation system employed by the solar thermionic system. Also, the

orientation accuracy would be obtained from measurements made in con-

nection with the primary solar thermionic experiment.

3. EXPERIMENT/SPACECRAFT I_ERFACE REQUIREMENTS

The interface requirements for the solar thermionic experiment

(assuming three test panels mounted together in one magnesium support

frame) are summmrized in the follc_ing:

Electrical Power Required:

Weight:

Surface Area Required:

_olume:

Instrumentation:

0.12 watts for 6 thermistors

1 pound

14 in x 5 in

3
8 in

3 volts (0-1.2V)

6 temperature (thermistors (0-SV)
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This experiment requires sun orientation and, if possible, a

measure of the orientation error. _is could be obtained for the

primary experiment. Although not absolutely necessary, it would be

desirable to also have a measure of the radiation environment and

micrometeoroid density. These two items would be obtained from the

supporting science experiments included on the spacecraft.
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PYROMETER EXPERIMENT

I. BAC KGROD_)

Since all substances at temperatures above absolute zero radiate

electromagn.etic energy as a result _)f tnu atomic and molecular afita-

tion, we have radiation pyrometry. The power emitted per unit area

ecT 4is W = watts/cm- where -, the St<_fan-Boltzmann constant is in

• 2,o 4
watts/cm / K , and T is in degrees K. The dimensionless factor _,

called the total emissivity or emittance, is defined as the ratio of

the radiation of the surface in question to what woull be emitted by

an otherwise comparable blackbody, i.<., another idealization, one

that absorbs all incident radiation.

In this experiment, the pyrometer will view the radiated radia-

tion from the interior of the thermionic cavity and furnish informa-

tion on the "effective" temperature. The need for a pyrometer to

measure temperature of the cavity in parallel with the thermocouples

a!readv _ "•. s_pp:leu is threefold

I. The thermocouples degrade approximately 40°C per i00 hours.

^O
9 The "_ 'n-1 ......._. or:::_..._ calibration of the couples is off by a*i t._

40°C.

3. Diffusion of emitter material into the couple and visa-

versa causes contamination problems.

One type of pyrometer is the disappearing filament optical pyro-

meter, in which the unknown source is imaged onto a reference source

and both observed through a microscope. The reference, the filament

of a small vacuum lamp, can be made to "disappear" into the unknown

source by varying the im_..pcurrent. Filters are used to ccdu_e ci,,.,

appare-_t source if it is higher than the maximum obtainable .......
0

temperature (about 1500 C). If the instrument has been cali'_:"_te::,

and if the source is a blackbody, matching the brightness b': car>i::=

the lamp current will give a temperature determination.
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A fairly well-defined '_ffective wavelength" is achieved in the

optical pyrometer by a filter, usually red, nominally centered at
o

065_0_. Red is used because it works at !_er temperatures, stable

sharp-cutoff filters are available in this range. The brightness

sensor sets the fundamental limitation in the precision attainable
o

in this optical pyrometry. Within its range (4000 to 7000%), the

sensor can match brightness well enough to reduce the uncertainty

to as little as 0.2°C at 1400°C, 1.6°C at 1800°C, and I to 1.5°C

at 2900°C.

Another practical method utilizes color, or polychromatic

pyrometry. The color temperature of a nonblackbody may be defined

as the temperature to which it is necessary to heat a blackbody so

that its radiation will match the visual color of the nonblackbody.

In particular, if we choose two wavelengths (colors), _2 > >'I' in

the 4000 to 7000_ range, we can measure a T by taking the ratio of
c

powers radiated from an incandescent body at the wavelengths hI and

%

I_2 •

2. EXPERLMENT DEFINITION

The pyrometer experiment consists of two types of pyrometer

contained in a single instrument (see Fig. _9). The disappearing-

filament optical pyrometer is represented in the top path, where

the incoming radiation from the cavity is matched by a brightness

sensor against the light from the calibrated adjustable lamp filament

until the brightness of images match. _e two color pyrometer, in-

dicated by the lower light path is separated into two bands, which

are alternately admitted by the rotary chopper to the detector. The

two levels are telemetered back and compared.

The pyrometer instrument is mounted in the shadow formed by the

thermionic generator to prevent direct sun light from entering its

optical system.
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The effects of stray and/or reflected sunlight will be ac_'o_,_l_ed

for by ground cslibr_tion tests.
|

3. INSTR_ SPECIFICATIONS

Dimensions:

Weight:

Power:

Thermal:

Data:

Mounting:

Preferred Orbit:

4" diameter x 7" long

5 pounds

6 watts at 28 volts

-20°C to +80°C

96 bits/readout

At center of psrabolic reflector in shadow

of thermionic generater

any
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EXPERIMENT II-A

FLIGHT QUALIFICATION OF A

BRUSHLESS DC TORQUER-REACTION _"FLEEL

i. BACKGROUND

Attitude control is one of the vital functions of almost all

spacecraft. A widely accepted method of maintaining attitude control

is by reaction wheels. They provide fast continuous control and use

only replenishable electrical energy, in contrast to the limited fuel

of a gas jet system.

A conventional dc motor reaction wheel is shown in Fig. 30. _e

use of adc motor for reaction wheels is attractive because dc _notors

are about twice as efficient as ac motors of similar size and weight,

thus the power demand for adc motor is less, but the hazards of slid-

ing contact brushes have made dc motor usage undesirable.

This experiment utilizes electronic commutation and other features

of the brushless dc torquer which are very significant in simplifying

the attitude control system.

Figure 31 illustrates the simplification to the system by utiliz-

ing the capabilities of the electronic commutation and the dc torquer.

The gear train is eliminated by the use of the torquer which can pro-

vide the torque directly; the brushes are not needed, eliminating a

source of friction and improving performance and reliability. Reversi-
o

bility is obtained by logic at a milliwatt power level and without

requiring the additional power and voltage drops of a bridge reversing

circuit. No power amplifier is necessary since only a signal level

input can control the output with good linearity.

The rotating assembly is completely inert. Problems with wind-

ings or lamination movements affecting the balance of the rotating

assembly do not exist. The thermal situation is improved by reducing

the power required and the fact that no power is dissipated on the

rotating assembly.

i
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Low-speed operation of the torquer also provides better bearin_

operation and life.

2. EXPERi>_NT DEFINITION ,

The dc torquer-reaction wheel experiment is based on the work

performed by the Sperry Farragut Company (Ref. I) for NASA Goddard

Space Flight Center (Ref. 2).

The experiment will be florin as a "passenger" with the conven-

tional reaction wheels already provided for the attitude control

system. The switchover to the brushless dc torquer will be made and

its performance monitored. The dc torquer will be left in the system

as long as its performance meets the mission requirements. If at any

time its operation is questionable, the original reaction wheel will

be switched back into the loop (manually or automatically). In this

fashion, the brushless dc torquer can be "flight proven" and not be

a primary component in the attitude control system.

Design details are available in Refs. i and 2.

P

3. EXPERIMENT SPECIFICATION

tSize: dc torquer:

Electronics:

Weight: dc torquer:

Electronics:

12-inch diameter, 3-inch height

6" x 6" x i"

12.5 pounds

1.5 pounds

Power: 25 watts maximum

Thermal: -30°C to +60°C

Data: 50 bits/minute

Mounting: On control axis

Preferred Orbit: Any
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REFERENCES
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Control of Brushless dc Torquer-Reaction Wheel, W. M. Casaday,
Sperry Farragut
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NASA Publications TND 2108 and TNI) 2819
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EXPERI_iENT II-B

ATTITL_DE CONI_ROL BY ELECTRIC IX4RUSTORS

I. BACKGROUND

Of the various types of electric thrustors under development,

only the ion engine and resistojet can be considered sufficiently

advanced for application on this spacecraft. Arc jets and plasma

jets have not been developed with the low thrust levels required,

and it is doubtful that sufficient power efficiency can be achieved

in the thrust range required (i_ _ib to I0 mlb). The hydrogen-oxygen

electrglysis thrustor may eventually offer advantages for satellites

with _to 2-year lifetimes, but their characteristics are not yet

well defined and the hardware is not sufficiently advanced. The

experiment considered for this spacecraft uses the ion engine.

Surface Contact lon Engine. A surface contact ion engine is an

electrostatic ion accelerator in which the source of ions is a hot

metal surface upon which the propellant is ionized. The exhaust

velocity or specific impulse is controlled by the applied voltages.

The propellant used is cesium, an alkali metal, carried as liquid

in a reservoir where a portion of the volume is heated to creata a

vapor pressure sufficient for the desired flow rate.

EOS has developed such engines over the past 6 years, ranging

from submillipound sizes through 2, i0, 30, and I00 millipounds of

thrust. Devices of this type have been operated for a thousand hours

and have been tested successfully in suborbital and orbital flights.

A thrustor system consists of a power-conditioning and control

(PC_C) unit, propellant feed system, ionizer and accelerator assembly,

and neutralizer. Table 7 gives a preliminary weight breakdown for

three thrust levels.
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TABLE 7

WEIGHT BREAKDO_N FOR TYPICAL CONTACT ION T_USTORS

(Thrust)

Engine Weight

Neutralizer Weight

Feed System Weight

(for i year total running)

Power Conditioning and

Control System Weight

Total Weight

(i0 _ib) (300 _ib)

O. 4 Ib I ib

0. i Ib 0. I Ib

(I0 mlb)

2.3 Ib

0.2 Ib

0.2 ib 2.8 ib 75 Ib

1.0 Ib 2.5 Ib 15 ib

1.7 Ib 6.4 Ib 92.5 Ib
4

Figure 32 shows a I0 _ib thrustor developed at EOS specifically

for satellite attitude control and this engine is the one selected

for the experiment. This device has a projected lifetime in excess

of i0,000 hours. Figure 33 shows a typical 300-_Ib thrustor.

Two solutions exist for the problem of neutralizing ion propul-

sion engines. Both provide an electron current equal to the ion beam

current as required to maintain the spacecraft potential at or near

that of the environment. Any large difference in potential would

create decelerating fields outside of the spacecraft, which would

result in a loss of thrust.

_e conventional approach to neutralization is to place a ther-

mionic emitter close to the ion beam. In the simplest case, this nay

be accomplished with a resistively heated, refractory-metal wire.

The second method utilizes a cesium discharge as the electron source.

The discharge forms a highly conducting path to the beam, resulting

in high efficiencies. However, this neutralizer requires a cesium

reservoir and has generally more power conditioning requirements.

The conventional thermionic neutralizer is, at present, more

desirable for engines producing thrust levels up to about 1/2 mlb.
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Cesium Electron Bombardment Ion Engines. The cesium bombardment

engine under development at EOS for the NASA Lewis Research Center

has demonstrated a 2600-hour lifet_e with negligible loss of perform-

ance or structural integrity. Projected lifetimes are in excess of

20,000 hours.

The bombardment engine produces ions by electron bombardment of

cesium vapor in a discharge chamber. Ions are extracted through

apertures in a screen electrode and accelerated through matching

apertures in an accelerating electrode. The feed, neutralizer and

power conditioning, and control systems are similar to those of the

contact ion engine.

Propellant systems for use with cesium ion engines have been under

development for several years at EOS. The type that has evolved

through this effort has been found to be simple and reliable. This

has been achieved by designing a no-moving-parts system where the

surface tension forces the propellant are utilized almost exclusively

to pump the propellant and to maintain stable liquid-vapor interfaces

within the system during zero-g operation.

Figure 34 shows the components of a typical system. The main

cesium reservoir contains a series of fins which converge along the

central axis. Because of the surface tension forces, the cesium pro-

pellant is directed to the central axis. Here the propellant is

picked up by the porous rod and carried by capillary action to the

vicinity of the vaporizer where the cesium is vaporized and delivered

to the ion engine.

The system shown in Fig. 34 has a capacity of 5 ib of propellant.

Smaller systems can utilize the same basic geometry or can use a new

geometry which has recently been dev_loped. This configuration is

shown in Fig. 35 which shows an exploded view of a system having a

capacity of about 30 grams. In place of _ the fin structure, a series

of truncated cones are used as the surface tension elements. The

porous rod is retained in this system to carry the propellant to the

vaporizer.
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i_hrustor Power Conditionin_ and Control. Power from the primary

source must be conditioned to provide the necessary voltages and power

levels required by each thrustor. Tables 8, 9, and !0 compare the

input and output power for power conditioning of the ion engine and

the bombardment thrustor. The development by EOS of supporting

electronics for the suborbital and orbital flights of ion engines

led to extensive study and development over the wide range of I0 @ib

to I00 mlb and I0 watts to 30 kw.

2. EXPERImeNT DEFI}_TION

i_he state of development, of the low thrust electrical engine has

reached the point where a space experiment is in order. The primary

reason for such an experiment is to prove this type of propulsion in

the space environment. Also, space offers an ideal envirom_ent for

measuring the electric engines extreme low thrust (10 -6 to 10 -5 pounds),

which because of the need for a zero-g environment, isolation from

vibration and a deep vacuum is difficult to do on earth.

This experiment proposes to use electric engines for control of

the spacecraft roll rate. The experiment would be designed so that

upon ground command, control of the spacecraft roll rate would be

switched from the cold gas system to the low thrust electric engine

experiment. The capability would also be provided to switch back to

the primary cold gas system by means of ground command.

Based on the anticipated disturbance torques, a total impulse of

approximately 10 -3 ib-see per c_cle would be required once every 1.2

days. tThis would be accomplished by two sets of engines firing in

the roll plane. Each set of engines would have thrust capability in

two opposite directions. Thus, if thrust were desired to counter a

clockwise roll of the spacecraft, the counterclockwise engine in each

engine set would be fired.

The engines will be mounted on the tips of the solar arrays and

the power conditioning will be shared between opposite sets of engines.
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TABLE 8

P(_qER CONDITIONING INPUT P_rER

Contact Ion Thrustor

Leve I

Assumed Power

Voltage

Current

Bombardment Ion Thrustor

Level i0 Micropound

Assumed Power 22.9 w

Voltage 28 v

Current 0.818 amp

I0 Micropound

16.5 w

28 v

0.579 amp

TABLE 9

Pd#ER COh'DITIONING OUTPUT P(_4ER, CONI]tACT ION TILRUSTOR

Function

i0 _Ib Contact Ion Thrustor

Voltage Current Power (w)

_F +3.0 kv 0.5 ma

V- -I.0 kv 50 _amp

Ionizer Heater 2.5 v 3.0 amp

Neutralizer Heater 1.4 v 0.71 amp

Feed Heater 2.0 v 2.0 amp

1.5

O.05

7.5

1.0

4.0

14.05

TABLE i0

Pd_ER CONDITIONING OUTPUT POWER, BOMBARDMENT ION THRUSTOR

Function

I0 _Ib Bombardment Ion Thrustor

Voltage Current Power (w)

V÷ +i.0 kv 1.0 ma

V- -500 v 0.I ma

Magnet 1.0 v 0.2 amp

Arc 9.0 v 0.6 amp

Cathode ' 2.0 v 1.0 amp

Neutralizer 1.3 v 0.6 amp

Feed Heater 1.5 v 2.0 amp
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6 EXPERIMENT SPECIFICATIONS

Dimensions: Electronics: 6" x 6" x 4" total

Engine: 2" dis__.eter x 4" long (each)

Weight: Electronics: 2 pounds (total)

Engines: 3 pounds (4 engines)

Power: 28 watts (total)

Thermal: -30°C to +75°C

Data: I0 voltages (0 to 5 v)

i000 bits/readout

.Mounting: On tips of solar arrays

Preferred Orbit: 325 nautical mile circular
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EXPERI_IENT III-A

THERMAL CONTROL WITH PHASE CHANGE .MATERIALS (PCM)

I. BACKGROUND

Experience has shown that the reliability of a satellite or

spacecraft is greatly enhanced if its dependence upon power and upon

moving parts is eliminated or at least reduced to a minimum. The

exploration of various possible means of passive therm_l control s'_-

tems is, therefore, attractive for long-life satellites and spacecraft

A passive thermal control system is here defined as one that does not

incorporate moving parts or moving fluids, and does not require an\-

power for its operation.

When the incident orbital heat fluxes on a satellite vary over a

wide range, or the on-board equipment heat dissipation is widely fluc-

tuating, passive thermal control by the application of phase-change

materials (PCM) presents an attractive approach. Basically, the PCM

thermal control system consists of a core filled with a substance

capable of undergoing a phase change (solid to liquid and vice versa)

at a predetermined temperature. The core is sandwiched between the

equipment to be controlled and a space radiator. The scheme is shown

schematically in Fig° 36°

As the outer satellite surface (space radiator) is exposed to

external radiation or to internal equipment heat dissipation, the

phase-change material will absorb the excess heat and melt at a con-

stant temperature (the material melting temperature). When the satel-

lite outer surface faces space, away from the sun, and heat is being

lost, or if the heat generating equipment is shut off, the PCM will

solidify and give off the heat it absorbed during melting. The equip-

ment will thus be in a stabilized temperature environment regardless

of the fluctuations in the incident external or internal heat fluxes.

A comparison with other (semiactive) thermal control systems, on

an analytical basis, shows that the PCM thermal control scheme has, in

addition to being completely passive (absence of moving parts and
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nondependence on external power), a definite weight advantage over

louvered or forced circulation syst_mSo With presently available

phase-change materials (heat of fusion = 130 Btu/ib), it is possible

to attain a weight index (weight of phase-change material needed per

unit of absorbed heat) of 0.00385 Btu/ib.

Two different phase-change materials, technical eicosame (C20H42)

and polyethylene glycol (carbowax 600), and two different PCM core

designs (finned and finless configurations) were tested in the Republic

thermal-vacuum chamber_

Ground test results show that satellite temperature control by

phase-change materials is feasible; that it is possible with a PCM

thermal control system to maintain satellite equipment and structural

components within narrow temperature limits under widely fluctuating

satellite external heat loads. Most of the test data indicated that

the PCM thermal protection system reduced on-board equipment tempera-

ture fluctuations by at least 75 percent (compared to an unprotected

satellite)° Much better results could be expected with phase-changeo

The objectives of this experiment are:

Io Design and test a PCM thermal control in space and verify

ground tests.

2. Improve the analytical and design techniques with space data.

3_ Develop substances especially suitable for PCM thermal control

systems.

2o EXPERIMENT DEFINITION AND DESIGN

The basic test approach for the PCM thermal experiment is to con-

struct a test panel. The test panel will have a layer of phase-change

material interposed between the redundant telemetry transmitter and

its radiator or heat sink_ The other transmitter will be mounted to

the heat sink with conventional techniques. Both transmitters are

subjected to nearly identical external and internal heat loads and ti_e

resulting temperatures recorded and compared. This approach provides

a fairly direct comparison°

6961-Final (III)

I00



I

l

I
I

I
I

_::__; 41'

I

I
I

I

I
I

,ii

II

The phase-changer materials to be evaluated during the experi_.ent

will only be used after extensive ground testing.

have the following properties:

io
!

2.

3.

The materials should

High heat of fusion

Reversible solid-to-liquid transition

Melting temperature in the range of 50OF to 100°F (can be

altered to suit specific requirements)

4. Low coefficient of volumetric expansion in both the liquid

and solid phases

5. High density

6. Low change in density during change of phase

7. Nontoxic and noncorrosive

8. High thermal conductivity in both phases

9. Low vapor pressure in the vicinity of the melting point

I0. High specific heat in both phases

The two transmitters and test panel will be instrumented with

thermocouples adequate to define the thermal levels and differentials.

o EXPERIMENT/SPACECRAFT INTERFACE REQUIREMENTS

Dimensions

Weight

Power

Thermal

Data

Preferred orbit

4 inches x 2 inches x 1/2 inches

< 0°5 pound

0.6 watt for i0 minutes

-lOOC to +60oc

36 bits/sample; sample twice/orbit

any

6961-Final (III)
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EXPERIMEN_f III-B

THER_AL COATINGS (G. E. EXPERIMENT)

I. BACKGROUND

The optical characteristics of the surfaces of a spacecraft are

fundamental parameters in controlling the spacecraft temperature.

Thus, a major effort has been m_de in recent years to determine the

optical properties of various surfaces and even to develop surfaces

which have special desired optical characteristics and environmental

stability.

The need for adequate temperature control of spacecraft was

never more apparent than during the anxious hours in December oi

1962 as _riner II approached the Planet Venus, and the temperature

inside the vehicle rose well above that considered safe for the

electronic components and batteries. The difficulty apparently

stemmed from incomplete knowledge of the required pattern of tem-

perature-control coatings on the spacecraft. In addition, the

coatings undoubtedly deteriorated somewhat during the three-month

voyage. This event in the Mariner flight points up the i_ortance

of the role of thermal control in space vehicle.

The objectives of this experimentaare:

i. To measure, in the space environment, the solar absorp-

tance and total hemispherical emittance of selected thermal

coatings.

2. To determine the chances with time of the optical and ad-

hesive characteristics of the selected thermal coatings in

I
the space environment.

The Ames Research Center has developed a sensor and mounted six

of them on a common structure. In this sensor, each test coating is

applied to a metal-disk substrate one-inch in diameter which is

placed in a mounting cup. The disks are mounted on three small

plastic supports to minimize the conduction path. Radiant heat ex-

changes with the mounting cup are minimized by the use of four
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radiation shields. Surface temperature is measured by means of

thermistor soldered to the underside of the test disk. The radiation

sensors are arranged in a circular cluster with a reference surface

in the center. The reference surface is composed of razor blades

stacked together to form a large number of notches, which cause

multiple reflections and eventual absorption of most of the incident

radiation. As a result, the reference surface is essentially a black-

body. Because of the large number of reflections, any change in the

emittance or reflectance of the individual surfaces in the notches

would have only a very small effect cn the overall emittance or ab-

sorptance of the reference surface. To permit correction of heat

exchanges between the test surfaces and the sensor mounting cups,

the temperature of the base plate is measured with a thermistor.

Since the cups are in intimate thermal contact with the base plate,

it is assumed the cups are at all times at vase-plate temperature.

2. EXPERI_T_NT DEFINITION

The two most important optical properties in thermal design are

the absorptance of the surface with respect to solar radiation, _S'

and the total hemispherical emittance of the surface in the far in-

frared, eT, (T denotes surface temperature). Of somewhat lesser

importance, generally, are the absorptance of tile surface to earth

radiation, mE, the spectral absorptance and emittance, _X, and _T i,

the directional absorptance and emittance, _ and e@, and polariza-

tion effects. This experiment will be designed to measure the

absorptance and total hemispherical emittance of selected thermal

coatings.

. EXPERI_N_ SPECIFICATIONS:

Dimensions: 8 inch diameter by 3 inches deep

Weight: 2 pounds

Power: 0.2 watt for 20 minutes
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Data:

Thermal:

Mounting:

Perferred Orbit:

i00 bits/readout

-30°C to +70°C

Sun oriented; unobstructed view

any
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EXPERIMENT IV-A

COLD WELDING IN INTEGRATED SPACE ENVIRONmeNT

i. BACKGROUND

Recent advances in vacuum technology allow for attaining and

measuring pressures below i0 -I0 torr. This range increase from 10 -6

to I0 -I0 torr as limited as it is has opened new areas of scientific

investigations. Actual applications in these vacuum facilities are

limited by pump capacity vs outgassing, lock problems and associated

thermal control problems. At best the results of tests are based

upon assumptions of outer space conditions. The real test facility
t

is outer space.

The research experiment being considered here is designed to

s_udy the interaction of atomically clean surfaces with each other.

_hny chamber experiments between two surfaces of the same material

have appeared in recent literature. It has been shown that both

with metallic and nonmetallic materials the adhesive force in some

instances approaches the tensile strength of the material. Con-

sider an ideal curve where two surfaces are produced by breaking a

material and then matching the surfaces together again. If one

assumes that surface contamination and relaxation of the crystal

structure did not take place the original bonds should reform on

contact. The real situation, however, is not so restrictive. The

strength of materials, even that of whickers, is far less than the

theoritically calculated value because of imperfections of the

crystalline structure. The measured strength is essentially that

of the weakest grain boundaries. These are not hard to reproduce

and thus in an ultra high vacuum environment on breaking and making

of metal often 90 percent of the original tensile strength is re-

gained. The essential requirement is to preserve the cleanliness

of the surface and protect it from contamination from the gas phase.

At i0 -I0 torr, for example assuming a striking factor of i the sur-

face would be covered with a monomolecular layer in 3 hours.
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An experiment is reported by Borden who studied the friction of

diamond on diamond at i0 -I0
torr. Evidence is presented to show that

"cold welding" took place and small =pieces of diamond were torn out

of one surface and attached to the other. Thus the frictional forces

must have been equal to the shear strength of diamond itself.

, EXPERI_EN_ OBJECTIVES

II. Study the adhesion between metal versus oxide.

2. Study the adhesion between metal versus silicate surfaces.

3. Study adhesion of metallic films to nonmetallic substrates.

3. EXPERI}_NT DEFINITION

Several sets or pairs of metals/oxide and metal�silicates will

be selected and classified as to thickness, method of plating or

rating and types of metal (ferrous and nonferrous).

Each sample pair would consist of one oxide coated tub secured

to a strain sensitive rod and a mating tub secured to a slug which

when activated would apply one surface to the other for a predeter-

mined length of time and then pull to separate the surface samples.

The resultant strain to separation would be read as a detected peak

and stored until sampled by telemetry. Knowing the resultant forces

necessary to separate oxides from parent metal or metal from silicate

surfaces it will be possible to determine whether the samples adhered

and tore out the base metal or whether there was slight adherence

(superficial).

4. EXPERImeNT DESIGN_

Attached to a fixed base bar will be one half of each pair of

mating surfaces to be tested. A movable bar will curtain the mating

halves of each sample pair. At a predetermined time the pairs of

samples will be brought into contact and held there under a kno_,Jn

6961-Final (III)

106



I

I

I
I

I
I

i
I
I

I
I

I
I

I
I

I
l

prelosd. At some later time a linear solenoid will be sctivated te

put a tensile (or shear) load in the movable bar. The stress _n

each secondary arm (gage length) will be recorded via high-output

semiconductor transducers (5 Volt range) and stored for telemetry

o EXPERIMENT/SPACECRAFT INTERFACE REQUIRE_NTS

Temperature:

Elec. Power

Required:

Size:

Instrumentation:

Weight:

50°F to 100°F

-2.25 watt8 (-3 minutes)

4" x 4" x 1.5"

5 voltages (O-SV) (2 minutes)

i temperature (therm. O-5V)

2.0 pounds
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EXPERIMENT IV-B

SUBLI>tATION OF MATERIALS IN SPACE

I. BACKGROUND

The purpose of the experiment is to measure the sublimation rate

of samples of various materials under actual space vacuum. Literally
1

hundreds of such measurements have been made in the laboratory , but

at pressures much higher than those found in space.

Measurements made on a satellite would not only give the sublima-

tion rates under actual vacuum conditions, but could also yield the

result of combined effects, such as X rays, charged particles, and L%_'

radiation insofar as they affect the chemical stability and hence the

mass loss.

2. DESCRIPTION OF INSTRUMENT

The basic problem is to find a method of weighing the samples at

intervals in order to determine their weight, or more accurately the

mass losses. Since the entire satellite system is in free fall, no

ordinary weighing procedure is possible. The mass determination would

be made by using the sample as a load on a vibrating spring and, in

effect, measuring the resonant frequency of the system at sFecified

intervals.

The principle is illustrated in Fig. 37. A conventional tuniug-

fork driving circuit maintains the oscillation of the reed spring and

specimen. The reed is made of Elinvar, which has a zero ten_erature

coefficient of elasticity. This will prevent the masking of small

mass changes by changes in instrument temperature. A shield protects

the reed and drive system from hard EM radiation and, to a large ex-

tent, from charged particles.

The resonant frequency of the system will obey a relation to

the form

IL. D. Jaffee and J. B. Rittenhouse, "Behavior of Materials in Space

Environments," JPL Tech. Report 32-150
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= -- x const

m

where

m =

force constant, and

mass which, if the reed is very light, will be essentially

the mass of the specimen.

Differentiating the frequency expression, we obtain

d_ dm

m

As can be seen by studying the tables in Ref. i, the loss ratc,

even of plastics, is quite slow at ordinary temperatures; thus there

is a problem in measuring the small changes in frequency that would

occur in short intervals, such as a week. If dm/m were, for exon?_,

10 -4 the frequency change dw/_ would be only 1/2 x 10 -4 , which could

be measured directly only by transmitting the frequency to the earth,

However, by using the accumulated error over a sufficiently long

period, an error even less than the one chosen for the example would

become obvious. This would be done by allowing the amplifier to

drive a clock for, say, 24 hours and then comparing the indicated

time with a standard. Thus, if d_/_ is 5 x 10 -5 , the 24-hour errer

would be 8.6 x 104 x 5 x 10 -5 = 4.3 sec, about four times the daily

rate of a good watch. One clock would suffice for a large number of

samples since the rate of data accumulation is very sl_. The clock

would measure the rate of one oscillator for an appropriate interval

and then would be switched to the next oscillator, etc. Only the

oscillator actually under measurement would be driven, so the power

demand could be very small. After the rates of the entire series

of oscillators had been determined, the system could shut down for

a week or a month, when a new series of determinations would be made.

6961-Final (III)

109



I

I

I

I
I
I

I

I
I
I
I

I

I
I
I

I

I
I

|

,

Dimensions:

Weight:

P_er :

Magnetic

Interference:

Readout:

INSTRUMENT SPECIFICATIONS

1 x 1 x 2 inches (each oscillator, includi:_g

electronics)

1 x 2 x 6 inches (power, prograwaner and

clock)

2 ounces (each oscillator)

0.5 Ib (power, progra_er and clock)

2 watts_ except during shut-dc_ -_eric;ds

Not susceptible. Shielded t, Br_tect c_thc,r

circuits.

Parallel c,r serial readout from clock ouce

a day during sanN)ling. 200 bits/sample
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EXPER_T IV-C

_iETEOROID ARMOR TEST

I. BACKGROUND

The future of prolonged manned spaceflight depends on the develop-

ment of a lightweight meteoroid shield to protect the pressure hull.

The pressure hull in which the astronauts live would be extremely heavy

if it were called on to resist meteoroid penetration as well as reEain

the pressurized environmental system. Several designs have been pre-

sented that protect the pressure hull against all but the largest

meteoroids, but there is no present capability of assessing the rela-

tive effectiveness° Much effort has been expended in attempts to

simulate meteoroid impacts on earth-bound laboratories_

Most ground base test equipment cannot achieve the required

velocities and/or mass of the postulated space meteoroids. The actual

composition of the meteoroids is unknown; hence their hardness, cohe-

sion, elasticity, plasticity, etc. so-that their behavior on impact

with a shield is unknown. Some data are available on the probability

frequency of encounters and on the likely mass of each encounter but

this data is sparse.

2_ THE OBJECTIVES OF THIS EXPERIMENT

I. To test several meteoroid protection designs in the actual

space environment

2o To determine the frequency of impact, size and penetration

capability of the larger particles impacting some angle

3o To determine the average abrasion effect of small mass

particles and of larger mass particles impacting a'greater

than their initial angle. Since the abrasion is an average,

this part should be confined to the 2 circular orbit, unless

a tenuous corelation is sought for the high elliptical orbit.
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meteoroids, or larger ones impacting at less than their critical a_5_

the temperature of the inner surface of the panel tends to rise. If

there is a bright aluminum foil layer between the test panel and the

interior of the satellite, the temperature between the foil and the

panel will rise as the thermal coating is eroded away

Instrumentation _ould consist of thermistors for temperature

measurement and pulse counters for registering impact.

o

Weight

Size

Physical interface

Data

P owe r

6 pound (including electronics)

4 inches x 12 inches x 12 inches panel

plus 6 inches x 6 inches x 6 inches

electronics

Mounted on side of vehicle

Low bit rate

0.5 watts (average)

\
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EXPERIMENT V-A

LASER EXPERIMENT

i. BACKGROUND

The use of lasers for space applications has been under study and

development for a number of years. The JPL spacecraft, as specified

for this study, does not have the power or appropriate attitude control

to carry a laser onboard. However, information necessary to solving

many of the operational problems can be evaluated and valuable experi-

ments can be performed by leaving the laser and the receiver on the

ground and only providing a corner reflector on the satellite°

The type of information obtainable from an experiment .of this

type would be:

I. Feasibility of gravitational astronomy by use of ground-

based laser tracking

2. Optical properties of atmosphere and space background

3. Feasibility of laser spacecraft communications with ground-

based laser system

2. EXPERImeNT DEFINITION

The spacecraft will carry corner reflectors which are illumLinate_i

by a ground-based laser. The laser return signal would be detected b_

a ground-based receiver. The corner reflectors are constructed of

three reflecting planes orthogonally located with respect to each other.

By moving one of the planes with respect to the other two, the return

signal can be amplitude modulated and the amplitude modulation would be ...............

detected by the ground receiver.

A typical experiment sequence would be as foll_s: The gravita-

tional astronomy and optical properties experiments would be performed.

The optical properties experiment would provide a base line calibration

for the communication e_eriment which would be performed _y modulating

one of the planes.
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For minimum interference with the sun and maximum probability of

performing the experiment, a corner reflector would be mounted on each

of the 8 sides of the spacecraft.

The detail design and analysis of this experiment is beyond the

scope of this study, but the techniques and hardware are within the

present state of the art and the experiment provides valuable engi-

neering and scientific information.

INSTRUMENT SPECIFICATIONS

Dimensions: Corner Reflector:

Weight:

P_er :

Thermal:

Data:

Mounting:

Preferred Orbit:

6 in x 6 in x 6 in (,ach)

Electronics: 6 in x 6 in x 1 in (t:-tal)

Weight: 20 Ib (total)

3 watts at 28 volts

-30°C to +60°C

300 bits/acquisition

8 sides of spacecraft

I000 nautical miles; modified sun-synchronous
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VI-A

OPTICAL TRANSMITTANCE TEST

BACKGROUND

(See Experiment I-B Volume III)

EXPERIMEN_f DEF iNIT ION

(See Experiment I_B _/olume III)

A typical set of optical sarm_.les would consist of the

following:

Sa_le !:

2:

3:

4:

5:

6:

7:

8:

9:

I0:

ii:

12:

P

EXPERIMENT SPECIFICATION

Dimensions:

Weight:

Power:

Thermal:

Data:

Mounting:

Preferred Orbit:

typical lens element

same lens element with a sun shade (to

discriminate solar UV effects)

quartz lens used for ultraviolet measurements

same lens element with a sun-shade

typical optical filters and lens

combinations

optical filters with sun-shields

12 inches diameter

5 inches high

15 pounds

8 watts during readout

-20°C to +60°C

900 bits/readout

sun eriented

any
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SECTION Vll

SUPPORTING SCIENCE

INTRODUCTION

The supporting science has been included as a portion of the

engineering experiments, since they play an important part in the data

analysis, separation of effects and correlation of the engineerinB experi-

ments. The environment encountered in space has been monitored in some

fashion by all U. S. satellites to date, and reasonable data is available,

yet the biggest unknown in engineering experiments is the "cause and

effect" due to space conditions.

The supporting science experiments included in this section have

florin on previous spacecraft or their design is based on proven hardware

concepts. The primary intent of these experiments is to furnish data

on the environment as seen by the engineering experiments on a "real-

time" basis. A secondary benefit will be the additional kno_!edge of

the environment.

Supporting Science Classification

The areas covered by the supporting science experiments have been

divided into the following classifications:

I. Solar Ultraviolet

2. Solar Lyman Alpha

3. Proton-Electron Particles

4. Solar Gamma Ray

5. Solar X-Ray

6. Micrometeoroids

7. Magnetic Field

8. Pressure

Since there is a variety of missions and experimental payloads

possible the science experiments will vary accordingly. In each class

a typical science experiment has been cataloged to give the experin_enter

some basic information in providing the supporting science payload. It

should be noted these are representative supporting science experir_ents

and not the only choices available, but are typical of the type already

developed and flown.
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EXPERIMENT VI I-A

SOLAR ULTRAVIOLET

i. BACKGROUND

The major portion of the ultraviolet radiation exposure to the

spacecraft will be directly from the sun. This direct radiation _#ill

be the primary cause of any ultraviolet damage to the engineering

experiments. The measurement of this direct radiation will concentrate

Jn the 2000 to 3000°A region. The regions below 2000°A are monitored

by t1_e solar Lyman-Alpha and solar X-ray supporting science experi_ent_.

This division ef regions will aid in separating the "cause and effects _

on the engineering experiments.

2. EXPER_T DEFINITION

The solar ultraviolet will be monitored by a broadband instrument

(2000°A to 3000°A). The instrument consists of an objective lens made

of quartz, a filter, a Fahre lens, a photomultiplier detector and

associated electronics.

On-board calibration of the instrument is provided by a mercury

source which emits at 2537°A.

, iNSTRUmeNT SPEC IFICATION

Dimensions :

Weight :

Power :

Therma I :

Data :

Mount ing :

Preferred Orbit :

4 inches x 4 inches x 3 inches

1.0 pound

I watt

0o o-2 C to+60 C

-_6 bits/min, continuously

Directly at the sun

Any
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EXPERIMENT VII-B

SOLAR LY_h_N-ALPHA EXPERIMENT

i. BACKGROUND

The solar Lyman-Alpha (_ _ 1216_) line has been shown to exhibit an

absorption feature when viewed with a high dispersion spectrograph flo_

above the Earth's atmosphere, This feature is composed of two components;

a broad weak reversal, and a deep narrow central absorption core at

1215.67_. The broad reversal is believed to originate in the solar

atmosphere whereas the absorption core is attributed to neutral hydro-

gen lying bet_een the ionized E-layer of the Earth's atmosphere and the

sun, but outside the sun's atmosphere. The emission line itself ._ri_e_

in the chromosphere of the sun. The kinetic temperature required to ierr_

the line is of the order of Te _ 60,000 to 100,00C°K. However, the

temperature characterizing the emergent radiation, averaged over the

disk of the sun, is about 7200°K.

Measurements made to determine how much the net solar Lyman-Alph_

flux increases during flares indicate that the Lyman-Alpha flux remains

essentially unchanged during the occurrence of a flare. This does nc_t

imply that the intensity of the L}_an-Alpha may not increase greatly frcn_

a flare at the time of a flare, but only that this enhancement does not

appreciably alter the total amount of Lyman-Alpha radiation emmnatin_

from the solar disk.

Although no spectra of Lymmn-Alpha have been obtained for flares,

it is probably that the central reversal will be absent, as it so often

is in the Ca II lines. The wea_ reversal is caused by the partial

absorption of the line by hydrogen in the chromosphere at Sower tempera-

ture than the source of the line. During a flare, it is possible that

the upward and outward surge of hot gases would blow the cooler gas

away, thus tending to preserve the original line shape. It may be that

a flare or a series of flares, whether detected optically or not, will

distribute sufficient hydrogen into the region between the sun and earth

6961-Fina I (III) 121

!_i_ I

J

I
i

I

i_ i ii



I

I
I

I
I

I

I
I

I
l

I
I

I

l

to measurably affect the depth of the absorptien core. While it is

known that the rise time of flares is most generally less than I0 minutes,

it is not known how long flares may take to cause a change in the _bsorp-

tion core; if they do so at all.

2. EXPERIMENT DEFINITION

The objective of the experiment is to obtain a knowledge of how the

density of neutral hydrogen clouds, between the earth and the sun. chsn_es

W.L Lli I_ .,L:;I_ _

effects on engineering experiments.

An ionization chamber is used for measuring the intensity of the

hydrogen Lyman-Alpha radiation and comprises a nitric-oxide gas-filled

tube, or cylinder, 1 inch long by 0.8 inch diameter, made of exygen-free

copper and fitted with a lithium fluoride window at one end (see Fi_. 39).

The lithium fluoride is opaque to radiation below about II00_ and the

photoionization threshoid of nitric-oxide is 1340_, thus the spectral

response of the ion chamber is limited to radiation in this 240_-wide

wavelength region. Since more than 95 percent of solar radiation between

II00_ and 1340_ is concentrated in the Lyman-Alphs line near I_15% the

output signal from this ion-chamber detector is a good measure of ti_e

Lsnnan-A Ipha radiation.

• INSTRUMENT SPECIFICATIONS

Dimensions : Sensor :

We ight :

Power :

The rma I :

Data :

Mounting :

Orbit :

1-1/2 inch x I inch diameter

Electronics: 7 inches x 2 inches x 6 inches

Sensor: I pound

Electronics: 3 pounds

2 watts at 28 volts

-20°C to +60°C

I voltage (0-5 v) 6 bits/sample

Sensor directly toward sun continuously

Any
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EXPERI_N"r Vi I -C

PROTON AND ELECTRON SPECTRA AND DIRECTION

I. BACKGROUND

Despite the large number of experiments which have been carried out

to determine the space radiation environment, there still exists a need

for additional informmtion in order to assess the effects of this environ-

ment for specific satellite missions. There are several reasons for the

uncertainties which remain despite the measurements carried out to date,

one being the lack of adequate particle discrimination in the early

experiments which were performed.

Another is the large perturbation in the environment _ich was intro-

duced into the natural radiation environment by the detonation of high

altitude nuclear devices during the latter half of 1962. Besides the

complex time decay pattern followed by the artificially injected elec-

trons, recent experiment{ indicate that the intensity of the proton belt

,at the low altitudes is increasing with time, but data is sparce.

The objectives are to obtain measurements of proton and electron

spectra in well-defined energy intervals as a function of direction. The

energy intervals chosen will depend upon the particular orbit of the

satellite upon which the experiment is conducted.

2. EXPERIMENT DEF INITION

The proposed experiment is designed to measure proton and elec;tron

spectra in the following ranges :

Protons

30 - 50 Mev

50 - I00 Mev

I00 - 200 Mev

Electrons

0.5 - 1.5 Mev

1.5 - 2.8 Mev

> 2.8 Mev

Three directions would be measured. These ranges are most suitable

for a circular orbit at approximately 325 nautical miles. The r_nges _a_',_

be tailored to fit other orbits as required.

696 l-Fina i (III)
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Solid state detectors are used in a telescope configuration ]._c!ed

by electronic amplifiers, coincidence circuits, discriminator gates, and

a data conditioning section. The data conditioning section converts ra_

pulses from the coincidence circuits to a form ready for telemetering.

At present, the conditioning circuit accepts pulses from five pulses
-I -I

see to 1.5 x 105 pulses sec and produce logarithmically a d-c voltage

varying c___ n +_ 5 _n1_; where each volt corresponds approximately to

a decade.

, EXPERI_qT/SPACECRAFT IN_fERFACE REQUIREmeNTS

The interface requirements for the proton and electron spe_ tr'_ :,n_

direct ion experiment are:

Special Instrument

Volume

Weight

Power

Output signal

Telemetery Accuracy

Required

3 Charged Particle Telescopes

300 in 3 (total package including

electronics)

24 pounds (total package includinB
electronics)

9 watts

20 voltages (0-Sv)

I percent of full scale reading

Three telescopes are to be mounted on mutually perpendicular axes

with one of the axis pointed to the sun. The telescopes are to be

mounted so that they have an unobstructed view of space, in order t_,

evaluate the measured data, it is also necessary to know the spacecraft's

position and orientation in space.

The primary experiment does not require that the spacecraft be

oriented about the roll axis. If this is the case, only one telescope

(instead of three) pointing to the sun would be used. This would alter

the interface requirements summarized above to the following:

Special Instrument

Volume

We ight

1 Charged Particle Telescope

I00 in 3 (total package including

electronic s)

8 pounds (total package including

electronics)
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Power 3 watts

Output Signal 6 voltages (0-5v)

As before the telescope requires an unobstructed view.
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EXPERI}[E}_ ,TTx,-D

SOLAR GA_IA RAYS

'I. BACKGROUND

Low energy gamma-rays, from 0.I to 5 Mev, result from radioactive

decay of excited nuclei, fusion of light elements, and perhaps electron-

position annihilations. High energy gamma-rays, from 50 to 200 Hev,

shoudi result from the decay of neutral x-mesons produced in nuclear

interactions with high-energy particles and from the annihilation of

matter and antimatter. The high energy range is of greater interest

because the expectation of finding something is more definite.

As far as the low end of the energy spectrum of gan=na radiation is

concerned, there has been an observation of a flash of 0.5 Mev gala-

rays 0.5 minutes before a solar flare. Thus continuous monitoring of

solar gamma rays is important.

In order to provide answers to some of the solar problems, e.?.,

flare mechanisms and particle acceleration, and possible effects on the

engineering experiments, continuous monitoring of the solar gala rsdi_-

tion would be helpful.

2. EXPERIMENT DEFI!_ITION

The proposed experiment is designed to measure the solar gala-ray

flux in the energy range of 0.I to 200 Hev and correlate with _ny effects

on the engineering experiments.

The solar gamma-rays will be measured with scintillation detector,s.

The signal pulses will go into a pulse height analyzer and will be sorted

into six energy ranges. The pulses from each channel will be fed into a

counting rate circuit whose output will be a d-c voltage in the ran!;e of

0 to 5 volts suitable for the telemetry system.

. EXPERI_MENT/SPACECRAFT LNTERFACE REQUIREmeNTS

The interface requirements for the solar garmna-ray experin_ent a_-c:
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Special Instruments

Size

Weight

Power

Output Signal

Telemetry Accuracy Required

Scintillation Detectors

3
150 in

8 pounds

4 watts

6 voltages (0-5v)

1 percent of full scale reading

Each of the six channels would be sampled approxi_tely once per

ninute in order to detect any correlation between increased gan_a-ray

activity and solar flares. The scintillation detectors must be crleI_te!

to the sun and be mounted on the spacecraft so that they have an un-

ebstructed view of space.
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F_XPERIf,lENT VII-E

SOLAR X-RAY

I. BACKGROU_

The X-ray intensity varies with time and has a large variation from

sunspot minimum to sunspot maximum. The solar cycle increase is about

a factor of 200 in the 2 to o_ band and about a factor of 50 in the 8 to

20_ band. The increases in the intensities in the 2 to 8_ and 8 to 20_

bands are even greater at times of solar flares and the characteristic

flare-produced X-ray spectrum is considerably harder thap that from the

quiet sun. The radiation of the sun in the wavelength range of X-rays

is a consequence of the high temperature of the emitting layers, namely

the corona and the region of transition to the chromosphere.

2. EXPERI_h_ OBJECTIVE

In order to provide _nswers to some of the solar problems; e.g.,

flare mechanisms, temperature gradient in corona, coronal structure,

and effects on engineering experiments, continuous monitoring of solar

X-rays is necessary. The solar X-ray flux should be monitored con-

tinuously or at least sampled as often as is practical.

3. EXPERIMEN_r DEFINITION

The proposed experiment is designed to measure the solar X-ray fl_x

in the 2 to 8_ and 8 to 20_ bands. Measurements are to be made once a

minute in order to detect any correlation bet_een increased X-ray activity

and solar flares.

The solar X-ray fluxes would be measured with Geiger counters. The

spectral sensitivity of the counters would be defined by the transmission

of the window and by the absorption and photoionization properties of tie

filling gas (Ref. 1 ). T_e Geiger counter covering the 2 to 5._ band _c,ul_
-2

h_ve an aluminum window having a thickness of 1.534 mg cm , and t1:e ccu_-

ter covering the 8 to 20_ _ould have a beryllium window having a ti_ickness

IR. . __._W. Kreplin, "Solar X-Rays," Annales de Geophysique, Vol 67, _>o2
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of 24.4 mg cm . Both counters _ould be filled with 8.6 milliretcr_

of ethyl formate and 702.6 millimeters of neon. The signal pulses _:_uld

be amplified, conditioned, and fed into a counting rate circuit. The

output would then be a d-c voltage in the range 0 to 5 volts suitable

for the telemetry system. The size of each counter would be determined

by the expected counting rate range and would be adjusted for the

specific orbit finally chosen.

. EXPERImeNT/SPACECRAFT IN_fERFACE REQUIREMENTS

The interface requirements for the solar X-ray experiment sre

sun_narized be low :

Special Instruments

Size

Weight

P owe r

Output Signal

Telemetry Accuracy Required

Geiger Counters
3

I00 in

3 pounds

I watt

2 voltages (0-5v)

1 percent of full scale reading

The Geiger counters must be oriented to the sun and be mounted on

the spacecraft so that they have an unobstructed view of space.
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EXPER_NT VI I-F

MICRO_TEORO ID S

I. BACKGROUND

The micrometeoroid supporting science experiment is desi_led to

monitor the micrometeoroid population around the earth and the relative

n_n_ber of hits an engineering experiment may have encountered.

2. EXPER_NT DEFINITION

A crystal microphone detector is used for its simplicity and its

reliability. A crystal microphone is mounted against s sounding plate

which is acoustically isolated from the remainder of the vehicle by

isolating mounts. Additional isolation can be achieved by tuning the

microphones to frequencies above any spacecraft vibrational freque:_cies,

(Valuable information could be obtained if instrumentation of the secon-

dary panels directly was provided).

_. INSTRUmeNT SPECIFICATIONS

Dimensions:

Detector Plate 5 inches x I0 inches x 1/4 inch (each)

Electronics 6 inches x 6 inches x i inch (total)

Weight :

Detector Plate 6 pounds (total)

Electronics 2 pounds (total)

Power: I watt

Thermal: - 20°C to +60°C

Data: _ i00 bits/orbit

Mounting: Perpendicular to vehicle motion and directly on
secondary panels

Preferred Orbit: Any
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EXPERIMENT VI ! -G

_IAGNrETIC FIELD

i. BACKGROUN-D

The magnetic field experiment is designed to measure the local

magnetic field of the spacecraft and record any variations _ith time

or events. The local ma_netic field of the spacecraft is import_nt in

correlating several of the supporting science instruments readings and

explaining any large deviations.

2. EXPERImeNT DEFINITION

The magnetometer is a three-core device. Each of the three _,rt!_,_-

onal sensors will produce an output voltage proportional to the _agnitude

of the component of the combined magnetic field along the axis of theft

sensor. The output voltages of the three sensors will each occupy a

separate channel and will be combined after reception to form the total

magnetic field vector. The field strength range of this instrur_ent is

from I00 to 50,000 gammas.

° INSTR_N_f SPECIF ICATION

Dimensions :

Weight :

Power :

Thermal :

Data :

Mount ing :

Preferred Orbit:

5 inches x 4 inches x 4 inches

4 pounds

0.5 watt

-30°C to +60°C

50 bits/minute

Directly on a secondary panel near supporting
science measurements

Any
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EXPERI_T %_I-H

lOCAL PRESSURE

i. BACKGROUND

The local pressure supporting science experiment is desig_ed to

r_onitor the pressure in the spacecraft. Information on out_assinB rates

and its variation with time and events will supply valuable infor:_:ation

on the amount and t}_pes of mmterial being given off by the sp._eecr<sft.

Experiments such as the Sublimation of Materials require some l_,_:wlcd_ic

of the hardness of the vacuum to ma_e meaningful calculations.

2. EXPER I_"NT DEFLNITION

Pressure in a chamber exposed to the atmosphere through a _nL_e-

edged orifice is measured as a function of orifice orientation (with

respect to direction of motion) and payload velocity. If the gas cor_-

position is ksnown, or can be assumed with fair accuracy, the pressure

in the chamber can be used to determine the total gas density. The

gauge is sealed before flight and is opened automatically at desired

a ititude.

Two modified magnetron-type "Redhead" pressure gauges for r:easure-
-II -5

n'ent of pressure over .the ranBe of I0 to I0 _ Hg. The io_ tr_ps _rc

cylindrical electrodes painted on the gauge walls bet_:een the _

region and the orifice. In operation, 4800 volts are applied bet_een tle

anode and the cathode which was grounded through the electrometer.

Magnetic field strength is i000 Gauss. During each 4 minute operating

cycle, 30 volts is applied between the ion traps for _ 90 seconds to

determine the effect of charged ambient particles.
-9 -6

In the pressure range, I0 to I0 torr, the gauges usually strike

a discharge in less than 30 seconds. The electrons are trapped axially

by the potential of the cathode end-plates, and radially by the magnetic

field. Ions are formed from collisions bet_'een electrons and incon_ing

neutral particles and are collected at the cathode to create the ca_,_<,_e

current which is fed into a logarithmic electrometer. Gauge sensitivity

in amps/torr varies with pressure and particle species.

6961-Final (III) 133



I
l

I
l

l
I
I

I
I

I
l
I

I
I

I

I
I
I
I

.
IN STRUMEI,_ INTERI'ACE

Dimensions :

Sensor 4 inches x 5 inches x 5 inches

Electronics

Weight :

Power :

Thermal :

Data:

Mount ing :

Preferred Orbit :

6 inches x 6 inches x I inch

5 Ibs (total)

3 watts

-20°C to +50°C

I00 bits/minute

Inside spacecraft in area of interest

Any
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